Joint Crediting Mechanism Approved Methodology ID AM002 "Energy Saving by Introduction of High Efficiency Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller, Version 2.0

B. Terms and definitions

Terms	Definitions			
Centrifugal chiller	A centrifugal chiller is a chiller applying a centrifugal compressor.			
	It is commonly used for air-conditioning with huge cooling load,			
	e.g., buildings, shopping malls or factories etc.			
Cooling capacity	Cooling capacity is the ability of individual chiller to remove heat.			
	In this methodology, "cooling capacity" is used to represent a			
	cooling capacity per one chiller unit and not for a system with			
	multiple chiller units.			
Periodical check	Periodical check is a periodical investigation of chiller done by			
	manufacturer or agent who is authorized by the manufacturer, in			
	order to maintain chiller performance.			

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures	energy by introducing high efficiency centrifugal chiller for the	
	target factory, commerce facilities etc. in Indonesia.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	chiller, calculated with power consumption of project chiller,	
	ratio of COPs (Coefficient Of Performance) of reference/project	
	chillers and CO ₂ emission factor for electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project chiller,	
emissions	calculated with power consumption of project chiller and CO ₂	
	emission factor for electricity consumed.	

Monitoring parameter	•	Power consumption of project chiller			
	•	Electricity imported from the grid, where applicable			
	•	Operating time of captive electricity generator, where			
		applicable			

D. Eligibility	y criteria					
This method	ology is applicable to projects that satisfy all of the following criteria.					
Criterion 1	Project chiller is a centrifugal chiller with a capacity of less than 1,250 USRt.					
	* 1 USRt = 3.52 kW					
Criterion 2	COP for project chiller <i>i</i> calculated under the standardizing temperature					
	conditions* ($COP_{PJ,tc,i}$) is more than 6.0.					
	$\text{COP}_{\text{PJ,tc,i}}$ is a recalculation of COP of project chiller i (COP _{PJ,i}) adjusting					
	temperature conditions from the project specific condition to the standardizing					
	conditions. $\text{COP}_{\text{PJ},i}$ is derived in specifications prepared for the quotation of					
	factory acceptance test data at the time of shipment by manufacturer.					
	[equation to calculate COP _{PJ,tc,i}]					
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{cooling})]$					
	$\div (37 - 7 + TD_{chilled} + TD_{cooling})]$					
	$COP_{PJ,tc,i}$: COP of project chiller <i>i</i> calculated under the standardizing					
	temperature conditions* [-]					
	$COP_{PJ,i}$: COP of project chiller <i>i</i> under the project specific					
	conditions [-]					
	$T_{cooling-out,i}$: Output cooling water temperature of project chiller <i>i</i> set					
	under the project specific condition [degree Celsius]					
	$T_{chilled-out,i}$: Output chilled water temperature of project chiller <i>i</i> set					
	under the project specific condition [degree Celsius]					
	TD _{cooling} : Temperature difference between condensing temperature					
	of refrigerant and output cooling water temperature					
	1.5 degree Celsius set as a default value [degree Celsius]					
	TD _{chilled} : Temperature difference between evaporating temperature					
	of refrigerant and output chilled water temperature,					
	1.5 degree Celsius set as a default value [degree Celsius]					
	*The standardizing temperature conditions to calculate COP _{PJ,tc,i}					
	Chilled water: output 7 degree Celsius					
	input 12 degree Celsius					

	Cooling water: output 37 degree Celsius
	input 32 degree Celsius
Criterion 3	Periodical check is planned more than four (4) times annually.
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is
	zero.
Criterion 5	Plan for not releasing refrigerant used for project chiller is prepared. In the case
	of replacing the existing chiller with the project chiller, refrigerant used for the
	existing chiller is not released to the air.

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Power consumption by reference chiller	CO ₂		
Project emissions			
Emission sources GHG types			
Power consumption by project chiller	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

1. The COP value tends to increase as the cooling capacity becomes larger.

2. The reference COP, which has a certain cooling capacity, is set at a maximum value in corresponding cooling capacity range.

3. The maximum values of COP in each cooling capacity ranges are defined as $\text{COP}_{\text{RE},i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec} \}$$

 RE_p : Reference emissions during the period p [tCO₂/p] EC_{PLi,p} : Power consumption of project chiller *i* during the period p [MWh/p]

I-3

COP_{PJ,tc,i}: COP of project chiller *i* calculated under the standardizing temperature conditions [-]

COP_{RE.i} : COP of reference chiller *i* under the standardizing temperature conditions [-]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

 $\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$ $\mathbf{ER}_{\mathbf{p}} : \text{Emission reductions during the period } p [tCO_2/p]$ $\mathbf{RE}_{\mathbf{p}} : \text{Reference emissions during the period } p [tCO_2/p]$ $\mathbf{PE}_{\mathbf{p}} : \text{Project emissions during the period } p [tCO_2/p]$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project chiller consumes only grid electricity	The most recent value
	or captive electricity, the project participant applies	available at the time of
	the CO ₂ emission factor respectively.	validation is applied
	When project chiller may consume both grid	and fixed for the
	electricity and captive electricity, the project	monitoring period
	participant applies the CO ₂ emission factors for grid	thereafter. The data is
	and captive electricity proportionately.	sourced from
		"Emission Factors of
	Proportion of captive electricity is derived from	Electricity

Parameter		D	escripti	on of da	ta			Source
	dividing captive electricity generated by total						otal	Interconnection
	electricity	consum	ed at t	he proj	ect site	. The to	otal	Systems", National
	electricity	consur	ned is	a su	mmatio	n of g	rid	Committee on Clean
	electricity	importe	d (EI _{grid}	_{i,p}) and	captive	electric	ity	Development
	generated (EG _{gen,p})	* during	g the mo	onitoring	g period.		Mechanism Indonesian
								DNA for CDM unless
	* Captive e	electrici	ty gene	rated ca	in be de	erived from	om	otherwise instructed
	metering	electric	city g	enerated	l or	monito	red	by the Joint
	operating ti	me (h _{ge}	n,p) and	rated ca	pacity of	of genera	tor	Committee.
	(RC _{gen}).	-	-					[Captive electricity]
	-							CDM approved small
	[CO ₂ emiss	ion fact	or]					scale methodology:
	For grid ele	ectricity	: The n	nost rec	ent valu	ie availa	ble	AMS-I.A
	from the se	ource s	tated in	this ta	ble at t	the time	of	
	validation							
	For captive	electric	city: 0.8	* [tCO ₂ /	/MWh]			
	*The mos	t recei	nt valu	e avail	able f	rom CE	ЮМ	
	approved s	mall sc	ale met	hodolog	gy AMS	S-I.A at	the	
	time of vali	dation i	is applie	ed.				
COP _{RE,i}	The COP of	of the re	eference	e chiller	<i>i</i> is sel	lected fr	om	Specifications of
	the default	COP v	alue in	the foll	owing t	able in l	ine	project chiller <i>i</i>
	with coolin	g capac	ity of th	e projec	et chille	r <i>i</i> .		prepared for the
								quotation or factory
			CO	P _{RE,i}			1	acceptance test data by
	Cooling capacity /unit	x<300	300 x<450	450 x<500	500 x<700	700 x<1,250		manufacturer.
	(USRt)		A~450	A\	A<700	X<1,230		The default COP value
	COP _{RE,i}	4.92	5.33	5.59	5.85	5.94		is derived from the
								result of survey on
	l							COP of chillers from
	l							manufacturers that has
	l							high market share. The
								survey should prove
								the use of clear
								methodology. The
	1							COP _{RE,i} should be

JCM_ID_AM002_ver02.0 Sectoral scope: 03

Parameter	Description of data	Source
		revised if necessary
		from survey result
		which is conducted by
		JC or project
		participants every
		three years.
COP _{PJ,i}	The COP of project chiller <i>i</i> under the project	Specifications of
	specific condition.	project chiller i
		prepared for the
		quotation or factory
		acceptance test data by
		manufacturer
T _{cooling-out,i}	Output cooling water temperature of project chiller <i>i</i>	Specifications of
	set under the project specific condition.	project chiller <i>i</i>
		prepared for the
		quotation or factory
		acceptance test data by
		manufacturer
T _{chilled-out,i}	Output chilled water temperature of project chiller <i>i</i>	Specifications of
	set under the project specific condition.	project chiller <i>i</i>
		prepared for the
		quotation or factory
		acceptance test data by
		manufacturer
RC _{gen}	Rated capacity of generator, where applicable.	Specification of
		generator for captive
		electricity

History of the document

Version	Date	Contents revised
02.0	10 November 2015	Electronic decision by the Joint Committee
		Revision to the description of "Measurement methods and procedures" for the power consumption of project chillers in the Monitoring Spreadsheet.
01.0	17 September 2014	Electronic decision by the Joint Committee
		Initial approval.