JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia
Name of the methodology proponents	myclimate Japan Co., Ltd.
submitting this form	
Sectoral scope(s) to which the Proposed	03. Energy Demand
Methodology applies	
Title of the proposed methodology, and	Installation of a separate type fridge-freezer
version number	showcase by using natural refrigerant for grocery
	store to reduce air conditioning load inside the
	store, version 1.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	⊠Additional information
Date of completion	30/04/2015

History of the proposed methodology

Version	Date	Contents revised
1.0	30/04/2015	First edition

A. Title of the methodology

Installation of a separate type fridge-freezer showcase by using natural refrigerant for grocery store to reduce air conditioning load inside the store, version 1.0

B. Terms and definitions

Terms	Definitions	
Separate type fridge-freezer	Refrigeration or freezer system with natural refrigerant of	
showcase	which condensing unit and showcase unit are separated and	
	the condensing unit is located outside the store. The system	
	includes the following:	
	Reach-in type fridge showcase or freezer showcase (a	
	structure to interrupt display room from outside air by	
	glass type door)	
	Open type fridge showcase (a structure to interrupt	
	display room from outside air by air curtain)	
	Walk in type fridge showcase (a structure which people	
	can go in and fill groceries from behind the display	
	shelves)	
Natural refrigerant	Natural refrigerant refers to naturally occurring substances	
	with refrigeration capacity and with zero ozone depletion	
	potential (ODP) (e.g., CO ₂ and NH ₃).	
Built-in type showcase	Refrigeration or freezer system of which condensing unit and	
	showcase unit are built in one unit.	
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity per	
(COP)	rated power consumption of the air conditioning system. The	
	values of cooling capacity and rated power consumption are	
	defined under specific temperature stated in ISO 5151:2010.	
Energy efficiency	For the purpose of this methodology, energy efficiency of the	
	fridge-freezer showcase is defined as the rated volume (L)	
	divided by the rated electricity consumption (W) or the rated	
	cooling capacity (W) divided by the rated electricity	
	consumption (W).	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving total	
measures	energy of in-store showcase and air conditioning system by	
	introducing a separate type natural refrigerant fridge-freezer showcase for grocery store in Indonesia, which leads to GHG	
	emission reductions, through reduction of air conditioning	
	demand by not releasing waste heat inside the store.	
Calculation of reference	Reference emissions are GHG emissions from both the reference	
emissions	built-in type fridge-freezer showcase and the reference air	
	conditioning system.	
	[Built-in type fridge-freezer showcase]	
	Reference emissions from the reference fridge-freezer showcase	
	are calculated with:	
	Electricity consumption of the project fridge-freezer	
	showcase;	
	Energy efficiency of the project fridge-freezer showcase;	
	Energy efficiency of the reference fridge-freezer	
	showcase; and	
	 CO₂ emission factor for consumed electricity. 	
	[Air conditioning system]	
	Reference emissions from the reference air conditioning system	
	due to waste heat from the reference fridge-freezer showcase are	
	calculated with:	
	Electricity consumption of the project fridge-freezer	
	showcase;	
	Energy efficiency of the project fridge-freezer showcase	
	in terms of the cooling capacity;	
	Energy efficiency of the project fridge-freezer showcase	
	in terms of the volume;	
	Energy efficiency of the reference fridge-freezer	
	showcase;	
	COP of the reference air conditioning system; and	
	CO ₂ emission factor for consumed electricity.	
Calculation of project	[Separate type natural refrigerant fridge-freezer showcase]	
emissions	Project emissions are calculated with power consumption of	

	installed separate type natural refrigerant fridge-freezer showcase	
	and CO ₂ emission factor for consumed electricity.	
Monitoring parameters	Electricity consumption of the project fridge showcase	
	•	Electricity consumption of the project freezer showcase

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project is to install a separate type fridge-freezer by using natural refrigerant
	or replacing the existing at a grocery store which is equipped with wall mounted
	type and/or ceiling cassette type air conditioning system and whose selling area is
	less than 400 (four hundred) m ² . The project includes both new installation and
	replacement of the existing fridge-freezer showcase.
Criterion 2	In the case of replacing the existing fridge-freezer showcase with the project
	fridge-freezer showcase, the existing one is a built-in type showcase.
Criterion 3	In the case of replacing the existing fridge-freezer showcase with the project
	fridge-freezer showcase, plans to prevent release of refrigerants into the
	atmosphere are prepared for the existing fridge-freezer showcase replaced by the
	project. Execution of the prevention plan is checked at the time of verification, in
	order to confirm that refrigerant used for the existing one replaced by the project is
	not released to the air.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption of the reference fridge showcase	CO_2	
Electricity consumption of the reference freezer showcase	CO_2	
Electricity consumption of the reference air conditioning system	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity consumption of the project fridge showcase	CO_2	
Electricity consumption of the project freezer showcase	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are GHG emissions from electricity consumption by both the reference built-in type fridge-freezer showcase and the reference air conditioning system used for cooling the exhaust heat from the reference fridge showcase.

Net emission reductions in this methodology are achieved by setting default values of "COP of the reference air conditioning system" in a conservative manner, and also achieved by not including "leakage of HFCs from the reference fridge-freezer showcase" in the count of emission reductions.

[COP of the reference air conditioning system]

The default values of COP of the reference air conditioning system are set in line with the approved JCM methodology ID_AM004 Ver1.0.

If the air conditioning system equipped in the project store has higher COP values compared to the table below within the respective cooling capacity range, the COP value of the air conditioning system installed at the project store is used.

If multiple types of air conditioning system with different cooling capacity rage shown in the table below are found in the project site, the highest value of COP is selected and applied to calculate reference emissions in a conservative manner.

Cooling Capacity [kW]	Reference COP
2.5 < x 4.1	4.00
4.1 < x 5.3	3.59
5.3 < x 7.1	2.96
7.1 < x 14.2	2.85

[Energy efficiency of the reference fridge-freezer showcase]

The default values of rated electricity consumption of the reference fridge and freezer showcase are set *ex ante* in the table below.

The reference fridge showcase

-Reach-in showcase

Range of volume (L)	Energy efficiency (L/W)
z < 900	1.18
900 z < 1,200	1.07
1,200 z	2.24

-Open showcase

Range of volume (L)	Energy efficiency (L/W)
z < 900	0.50
900 z < 1,200	0.65
1,200 z	0.73

The reference freezer showcase

-Reach-in showcase

Range of volume (L)	Energy efficiency (L/W)
z < 900	0.70
900 z < 1,200	0.70
1,200 z	1.01

Correspondence between project fridge-freezer showcase and reference fridge-freezer showcase:

Pattern	Project fridge-freezer	Reference fridge-freezer
	showcase	showcase
1	Reach-in type fridge showcase	Reach-in type fridge showcase
2	Open type fridge showcase	Open type fridge showcase
3	Walk-in type fridge showcase	Reach-in type fridge showcase
4	Reach-in type freezer showcase	Reach-in type freezer showcase

F.2. Calculation of reference emissions

 $RE_p \, = \, RE_{fridge,p} \, + \, RE_{freezer,p} \, + \, RE_{AC,add,fridge,p} \, + \, RE_{AC,add,freezer,p}$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $RE_{fridge,p}$: Reference emissions of the fridge showcase during the period p [tCO₂/p]

 $RE_{freezer,p}$: Reference emissions of the freezer showcase during the period p

 $[tCO_2/p]$

RE_{AC,add,fridge,p}: Reference emissions of the air conditioning system caused by the

electricity consumption due to exhaust heat from the reference fridge showcase during the period p [tCO₂/p]

RE_{AC,add,freezer,p}: Reference emissions of the air conditioning system caused by the

electricity consumption due to exhaust heat from the reference freezer

showcase during the period p [tCO₂/p]

$$RE_{fridge,p} = \sum_{i} \left(PEC_{fridge,i,p} \times \frac{\eta_{PJ,fridge,i}}{\eta_{RE,fridge,i}} \right) \times EF_{elec}$$

 $RE_{fridge,p}$: Reference emissions of the fridge showcase during the period p [tCO₂/p]

 $PEC_{fridge,i,p}$: Electricity consumption of the project fridge showcase *i* during the period *p*

[MWh/p]

 $\eta_{\rm PJ,fridge,i}$: Energy efficiency of the project fridge showcase *i* in terms of the volume

[L/W]

 $\eta_{\text{RE,fridge,i}}$: Energy efficiency of the reference fridge showcase *i* in terms of the volume

[L/W]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of the fridge showcase [-]

$$RE_{freezer,p} = \sum_{j} \left(PEC_{freezer,j,p} \times \frac{\eta_{PJ,freezer,j}}{\eta_{RE,freezer,j}} \right) \times EF_{elec}$$

 $RE_{freezer.p}$: Reference emissions of the freezer showcase during the period p [tCO₂/p]

 $PEC_{freezer,j,p}$: Electricity consumption of the project freezer showcase j during the period

p [MWh/p]

 $\eta_{\text{Pl,freezer,j}}$: Energy efficiency of the project freezer showcase j in terms of the volume

[L/W]

 $\eta_{\text{RE,freezer,j}}$: Energy efficiency of the reference freezer showcase j in terms of the volume

[L/W]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of the freezer showcase [-]

$$\begin{split} RE_{AC,add,fridge,p} &= REC_{AC,add,fridge,p} \times EF_{elec} \\ REC_{AC,add,fridge,p} &= \sum_{i} EH_{RE,fridge,i,p} \times \frac{1}{\eta_{RE,AC}} \end{split}$$

$$EH_{RE,fridge,i,p} = EH_{PJ,fridge,i,p} = HG_{PJ,fridge,i,p} + REC_{fridge,i,p}$$

$$HG_{PJ,fridge,i,p} = PEC_{fridge,i,p} \times \eta_{PJ,fridge,cap,i}$$

$$REC_{fridge,i,p} = PEC_{fridge,i,p} \times \frac{\eta_{PJ,fridge,i}}{\eta_{RE,fridge,i}}$$

RE_{AC,add,fridge,p}: Reference emissions of the air conditioning system caused by the

electricity consumption due to exhaust heat from the reference fridge

showcase during the period p [tCO₂/p]

REC_{AC,add,fridge,p}: Electricity consumption of the reference air conditioning system due to

exhaust heat from the reference fridge showcase during the period p

[MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

 $EH_{RE,fridge,i,p}$: Amount of exhaust heat from the reference fridge showcase i during the

period p [MWh/p]

 $\eta_{\text{RE,AC}}$: COP of the reference air conditioning system [-]

 $EH_{PJ,fridge,i,p}$: Amount of exhaust heat from the project fridge showcase *i* during the

period p [MWh/p]

 $HG_{PI,fridge,i,p}$: Amount of cooling energy generated by the project fridge showcase i

during the period *p* [MWh/p]

 $REC_{fridge,i,p}$: Electricity consumption of the reference fridge showcase i during the

period p [MWh/p]

 $\eta_{\text{PJ,fridge,cap,i}}$: Energy efficiency of the project fridge showcase *i* in terms of the

cooling capacity [W/W]

 $PEC_{fridge,i,p}$: Electricity consumption of the project fridge showcase i during the

period p [MWh/p]

 $\eta_{\text{PJ,fridge,i}}$: Energy efficiency of the project fridge showcase *i* in terms of the

volume [L/W]

 $\eta_{\text{RE,fridge,i}}$: Energy efficiency of the reference fridge showcase i in terms of the

volume [L/W]

i : Identification number of the fridge showcase [-]

$$RE_{AC,add,freezer,p} = REC_{AC,add,freezer,p} \times EF_{elec}$$

$$REC_{AC,add,freezer,p} = \sum_{i} EH_{RE,freezer,j,p} \times \frac{1}{\eta_{RE,AC}}$$

$$EH_{RE,freezer,j,p} = EH_{PJ,freezer,j,p} = HG_{PJ,freezer,j,p} + REC_{freezer,j,p}$$

$$HG_{PJ,freezer,j,p} = PEC_{freezer,j,p} \times \eta_{PJ,freezer,cap,j}$$

$$REC_{freezer,j,p} = PEC_{freezer,j,p} \times \frac{\eta_{PJ,freezer,j}}{\eta_{RE,freezer,j}}$$

RE_{AC,add,freezer,p}: Reference emissions of the air conditioning system caused by the

electricity consumption due to exhaust heat from the reference freezer

showcase during the period p [tCO₂/p]

REC_{AC.add.freezer.p.}: Electricity consumption of the reference air conditioning system due to

exhaust heat from the reference freezer showcase during the period p

[MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

 $EH_{RE,freezer,j,p}$: Amount of exhaust heat from the reference freezer showcase j during

the period *p* [MWh/p]

 $\eta_{\text{RE,AC}}$: COP of the reference air conditioning system [-]

 $EH_{PI,freezer,i,p}$: Amount of exhaust heat from the project freezer showcase j during the

period *p* [MWh/p]

 $\mathrm{HG}_{\mathrm{PI},\mathrm{freezer},\mathrm{j},\mathrm{p}}$: Amount of cooling energy generated by the project freezer showcase j

during the period *p* [MWh/p]

 $REC_{freezer,i,p}$: Electricity consumption of the reference freezer showcase j during the

period p [MWh/p]

 $\eta_{\text{PJ,freezer,cap,j}}$: Energy efficiency of the project freezer showcase j in terms of the

cooling capacity [W/W]

 $PEC_{freezer,i,p}$: Electricity consumption of the project freezer showcase j during the

period p [MWh/p]

 $\eta_{\text{PJ,freezer,j}}$: Energy efficiency of the project freezer showcase j in terms of the

volume [L/W]

 $\eta_{\text{RE,freezer,j}}$: Energy efficiency of the reference freezer showcase j in terms of the

volume [L/W]

j : Identification number of the freezer showcase [-]

G. Calculation of project emissions

 $PE_p = PE_{fridge,p} + PE_{freezer,p}$

 PE_{p} : Project emissions during the period p [tCO₂/p]

 $PE_{fridge,p}$: Project emissions of the fridge showcase during the period p [tCO₂/p]

 $PE_{freezer,p}$: Project emissions of the freezer showcase during the period p [tCO₂/p]

 $PE_{fridge,p} = \sum_{i} (PEC_{fridge,i,p}) \times EF_{elec}$

 $PE_{fridge,p}$: Project emissions of the project fridge showcase during the period p

 $[tCO_2/p]$

 $PEC_{fridge,i,p}$: Electricity consumption of the project fridge showcase *i* during the period *p*

[MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of the fridge showcase [-]

$$PE_{freezer,p} = \sum_{i} (PEC_{freezer,j,p}) \times EF_{elec}$$

 $PE_{freezer,p}$: Project emissions of the project freezer showcase during the period p

 $[tCO_2/p]$

 $PEC_{freezer,j,p}$: Electricity consumption of the project freezer showcase j during the period

p [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

j : Identification number of the freezer showcase [-]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emissions reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_{p} : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Descript	ion of Data	Source
	Energy efficiency of the r	eference fridge showcase i	Nominal value
	in terms of the volume.		available on product
			catalogs, specification
	-Reach-in showcase		documents or
$\eta_{ ext{RE,fridge,i}}$	Range of volume (L)	Energy efficiency (L/W)	websites.
	z < 900	1.18	
	900 z < 1,200	1.07	The default values are
	1,200 z	2.24	derived from the result
			of survey on energy

			efficiency of fridge
	-Open showcase		showcase from
	Range of volume (L)	Energy efficiency (L/W)	manufacturers well
	z < 900	0.50	known in the market.
	900 z < 1,200	0.65	The default values
	1,200 z	0.73	should be revised if
			necessary from survey
	When multiple types of sl	nowcases (Reach-in, Open,	result which is
	and Walk-in) are connected	ed to a condensing unit, the	conducted by JC or
	energy efficiency of Reac	h-in showcase above is	project participants
	selected according to the	total sum of rated cooling	every three years.
	capacity (watt) of all show	vcases connected	
	corresponding to the "Rai	nge of volume" in the table.	
	Energy efficiency of the r	eference freezer showcase j	Nominal value
	in terms of the volume.		available on product
			catalogs, specification
	-Reach-in showcase		documents or
	Range of volume (L)	Energy efficiency (L/W)	websites.
	z < 900	0.70	
	900 z < 1,200	0.70	The default values are
	1,200 z	1.01	derived from the result
			of survey on energy
$\eta_{ ext{RE,freezer,j}}$			efficiency of fridge
7RE,freezer,j			showcase from
			manufacturers well
			known in the market.
			The default values
			should be revised if
			necessary from survey
			result which is
			conducted by JC or
			project participants
			every three years.
	Energy efficiency of the p	project fridge showcase i in	The specifications of
n	terms of the cooling capac	city.	the project fridge
$\eta_{ ext{PJ,fridge,cap,i}}$	The value of rated cooling	g capacity (watt) and rated	showcase and
	electricity consumption (v	watt) used in calculation of	condensing unit for

	energy efficiency prepared by manufacturer is	quotation or the
	applied.	factory acceptance test
	T. I.	data by manufacturer.
	When multiple showcases are connected to a	
	condensing unit, the energy efficiency is calculated as	
	a ratio between the total sum of rated cooling capacity	
	(watt) of all showcases connected and the rated	
	electricity consumption (watt) of condensing unit.	
	Energy efficiency of the project fridge showcase <i>i</i> in	The specifications of
	terms of the volume.	the project fridge
	The value of rated volume and rated electricity	showcase and
	consumption used in calculation of energy efficiency	condensing unit for
	prepared by manufacturer is applied.	quotation or the
$\eta_{ ext{PJ,fridge,i}}$		factory acceptance test
	When multiple showcases are connected to a	data by manufacturer.
	condensing unit, the energy efficiency is calculated as	
	a ratio between the total sum of rated volume (little)	
	of all showcases connected and the rated electricity	
	consumption (watt) of condensing unit.	
	Energy efficiency of the project freezer showcase j in	The specifications of
	terms of the cooling capacity.	the project fridge
	The value of rated cooling capacity and rated	showcase for quotation
	electricity consumption used in calculation of energy	or the factory
	efficiency prepared by manufacturer is applied.	acceptance test data by
$\eta_{ ext{PJ,freezer,cap,i}}$		manufacturer.
	When multiple showcases are connected to a	
	condensing unit, the energy efficiency is calculated as	
	a ratio between the total sum of rated cooling capacity	
	(watt) of all showcases connected and the rated	
	electricity consumption (watt) of condensing unit.	
	Energy efficiency of the project freezer showcase j in	The specifications of
	terms of the volume.	the project fridge
	The value of rated volume and rated electricity	showcase for quotation
$\eta_{ ext{PJ,freezer,j}}$	consumption used in calculation of energy efficiency	or the factory
	prepared by manufacturer is applied.	acceptance test data by
		manufacturer.
	When multiple showcases are connected to a	

	T	1
	condensing unit, the energy efficiency is calculated as	
	a ratio between the total sum of rated volume (little)	
	of all showcases connected and the rated electricity	
	consumption (watt) of condensing unit.	
	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project air conditioning system consumes only	Updates on Grid
	grid electricity or captive electricity, the project	Electricity Emission
	participant applies the CO ₂ emission factor	Factors (calculated in
	respectively.	year 2013), National
	When project air conditioning system may consume	Committee on Clean
	both grid electricity and captive electricity, the project	Development
	participant applies the CO ₂ emission factor with	Mechanism,
	lower value.	Indonesia, unless
EF_{elec}		otherwise instructed
	[CO ₂ emission factor]	by the Joint
	For grid electricity: The most recent value available	Committee
	from the source stated in this table at the time of	
	validation	[Captive electricity]
	For captive electricity: 0.8* [tCO ₂ /MWh]	CDM approved small
	*The most recent value available from CDM	scale methodology
	approved small scale methodology AMS-I.A at the	AMS-I.A
	time of validation is applied.	
	Default COP values of the reference air conditioning	The approved JCM
	system.	methodology
	If multiple types of air conditioning system with	ID_AM004 Ver1.0
	different cooling capacity, which means different	_
	COP values, are found in the project site, the highest	
	value of COP is selected.	
	When an air conditioning system with higher COP	
$\eta_{ ext{AC,RE}}$	value than that of the reference COP with	
	corresponding cooling capacity set in the table is	
	installed at the project site, $\eta_{AC,RE}$ is revised to the	
	COP value of installed one.	
	Default COP of Reference	
	Air Conditioning System ($\eta_{AC,RE}$)	
	S - J - · · · · · · · · · · · · · · · · ·	l

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cooling Capacity [kW]	Reference COP
5.3 < x 7.1 2.96	2.5 < x 4.1	4.00
	4.1 < x 5.3	3.59
7.1 < x 14.2 2.85	5.3 < x 7.1	2.96
771 11 1112 2100	7.1 < x 14.2	2.85