JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia		
Name of the methodology proponents	Japan Pulp and Paper Company Limited		
submitting this form	Institute for Global Environmental Strategies		
	(IGES)		
Sectoral scope(s) to which the Proposed	1 1. Energy industries (renewable- / non-		
Methodology applies	renewable sources)		
Title of the proposed methodology, and	Installation of closed drain recovery system		
version number	and utilization for boiler feed water, Version		
	01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	28/11/2021		

History of the proposed methodology

Version	Date	Contents revised
01.0	28/11/2021	First edition

A. Title of the methodology

Installation of closed drain recovery system and utilization for boiler feed water, Version 01.0

B. Terms and definitions

Terms	Definitions	
Drain	Drain is a waste hot water which is trapped and condensed	
	after waste steam at process of works is caught by steam trap.	
Closed drain recovery	Drain recovery system is an equipment which recovers drain	
system	with some heating energy and reuses for boiler feed water.	
	Recovered drain is once stocked in tank before reuse. Closed	
	drain recovery system has a tank with the lid. Drained water is	
	kept at high temperature.	
Opening drain recovery	Opening drain recovery system has a tank without covering.	
system	Temperature of drained water is down to 100 °C or less	
	because vapor of drained water is released to atmosphere.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	By installing a closed drain recovery system, boiler feed water	
measures	is heated up. Consequently, fossil fuel consumption of boiler(s)	
	is reduced, leading to the reduction of GHG emissions.	
Calculation of reference	Reference emissions are calculated using the following	
emissions	parameters:	
	• Saving rate of boiler fuel consumption per degree of risen	
	temperature for boiler feed water	
	• Temperature of boiler feed water including both of makeup	
	feed water and hot water recovered by the project closed	
	drain recovery system	
	• Reference temperature of boiler feed water including both	
	of makeup feed water and hot water recovered by the	
	project closed drain recovery system	

	• Fossil fuel consumption of boiler(s) utilizing hot water		
	recovered by the project closed drain recovery system		
	• Net calorific value of fossil fuel consumed by boiler(s)		
	• CO ₂ emission factor of fossil fuel consumed by boiler(s)		
Calculation of project	Project emissions are not considered as a project closed drain		
emissions	recovery system does not utilize electricity and any fossil fuels.		
Monitoring parameters	• Amount of the fossil fuel type consumed by boiler(s)		
	utilizing hot water recovered by the project closed drain		
	recovery system		
	• Temperature of hot water recovered by the project closed		
	drain recovery system		
	• Temperature of boiler feed water including both of		
	makeup feed water and hot water recovered drain water		

D. Eligibility criteria			
This methodology is applicable to projects that satisfy all of the following criteria.			
Criterion 1	The project newly installs closed drain recovery system(s) to heat up boiler		
	feed water.		
Criterion 2	Project closed drain recovery system does not additionally utilize electricity		
	and any fossil fuels.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Fossil fuel(s) consumed by boiler(s) to generate the amount of heat	CO ₂		
recovered by a project closed drain recovery system			
Project emissions			
Emission sources	GHG types		
N/A	N/A		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

In this methodology, it is assumed that opening drain recovery system is set as the reference one, because in many factories in Indonesia, drain recovery system is not introduced or opening drain recovery system is applied. In case that an opening drain system is introduced, the temperature of recovered drain water is comparatively low, and the amount of boiler fuel is needed more than the case when a closed drain recover system is introduced.

In order to secure net emission reductions in this methodology, the reference emission is conservatively calculated in the following manners.

-Setting "temperature of makeup feed water into boiler(s)" as 30.3 °C based on the highest value in the monthly average atmospheric temperatures for 2 years (November, 2018- October, 2020) in Jakarta, Medan, Palembang, Balikpapan, Semarang, Denpasar, Cirebon, Serang, Tegal, Cilacap and Curag.

-Setting "Rate of decrease in boiler fuel consumption per degree rise in temperature of boiler feed water" as 0.0015 [dimensionless $/\Delta K$] in case that boiler feed water is 20 °C. The saving rate at the temperature range of boiler feed water higher than 20 °C is slightly higher than 0.0015 [dimensionless $/\Delta K$].

-Setting "reference temperature of boiler feed water including both of makeup feed water and hot water recovered by a project closed drain recovery system" as 100 [°C].

F.2. Calculation of reference emissions

$$RE_{p} = SRF_{boiler} \times \Delta T_{PJ,p} / (1 - SRF_{boiler} \times \Delta T_{PJ,p}) \times \sum_{i} FC_{PJ,i,p} \times NCV_{fuel,i,p} \times EF_{fuel,i,p}$$

$$\Delta T_{PJ,p} = TFW_{PJ,p} - TFW_{RE,p}$$

$$TFW_{RE,p} = \frac{TMW + R_{dw/mw,p} \times TDW_{RE}}{1 + R_{dw/mw,p}}$$

$$R_{dw/mw,p} = \frac{TFW_{PJ,p} - TMW}{TDW_{PJ,p} - TFW_{PJ,p}}$$

Where;		
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
i	:	Identification number of fossil fuel type consumed by boiler(s)
		utilizing hot water recovered by the project closed drain recovery
		system [dimensionless]
SRF_{boiler}	:	Rate of decrease in boiler fuel consumption per degree rise in
		temperature of boiler feed water [dimensionless $/\Delta K$]
$\Delta T_{PJ,p}$:	Risen temperature of boiler feed water heated by the project closed
		drain recovery system during the period p [ΔK]
$TFW_{PJ,p}$:	Temperature of boiler feed water including both of makeup feed water
		and hot water recovered by the project closed drain recovery system
		during the period p [degrees C]
$TFW_{RE,p}$:	Reference temperature of boiler feed water including both of makeup
		feed water and hot water recovered by reference drain recovery system
		during the period <i>p</i> [degrees C]
$FC_{PJ,i,p}$:	Amount of fossil fuel type <i>i</i> consumed by boiler(s) utilizing hot water
		recovered by the project closed drain recovery system during period p
		[mass or volume/p]
NCV fuel, i, p	:	Net calorific value of fossil fuel type <i>i</i> consumed by boiler(s) [GJ/mass
		or volume unit]
$EF_{fuel,i,p}$:	CO_2 emission factor of fossil fuel type <i>i</i> consumed by boiler(s)
		[tCO ₂ /GJ]
R _{dw/mw,p}		The ratio of flow rate of hot water recovered by the project closed drain
		recovery system to flow rate of makeup feed water during the period p
		[dimensionless]
TDW_{RE}	:	Temperature of hot water recovered by reference drain recovery
		system [degrees C]
TMW	:	Temperature of makeup feed water into boiler(s) [degrees C]
$TDW_{PJ,p}$:	Temperature of hot water recovered by the project drain recovery
		system during the period p [degrees C]
Note) In case t	hat T	$DW_{PJ,p}$ is not monitored, a value of 100 [°C] is applied to $TFW_{RE,p}$ in
conservative m	anner.	

G. Calculation of project emissions

Project emissions are not assumed in the methodology as a project closed drain recovery system does not utilize electricity and any fossil fuels, which is prescribed in the eligibility criterion 2. Therefore, the following formula is used to express the project emissions:

 $PE_p = 0$

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$				
Where				
ER_p	:	Emission reductions during the period p [tCO ₂ /p]		
RE_p	:	Reference emissions during the period p [tCO ₂ /p]		
PE_p	:	Project emissions during the period p [tCO ₂ /p]		

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
SRF _{boiler}	Rate of decrease in boiler fuel consumption per	Figure 3.5.1
	degree rise in temperature of boiler feed water	"Relationship between
	[dimensionless /\Delta K]	feed water temperature
		and saving rate of boiler
	For conservative default value, a value of 0.0015	fuel consumption" in
	may be applied based on the case that boiler feed	"Nomograph collection
	water is 20 °C, because the saving rate at the	for energy saving in
	temperature range of boiler feed water higher than 20	boiler" published by
	°C is slightly higher than 0.0015 [dimensionless /K].	Japan Boiler Association
NCV _{fuel,i,p}	Net calorific value of fossil fuel type <i>i</i> consumed by	In the order of
	boiler(s) [GJ/mass or volume]	preference:
		a) values provided by the
		fuel supplier;
		b) measurement by the
		project participants;
		c) regional or national

		default values published
		by the Ministry of
		Energy and Mineral
		Resources, Indonesia;
		d) IPCC default values
		provided in table 1.2 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		value is applied.
$EF_{fuel,i,p}$	CO ₂ emission factor of fossil fuel type <i>i</i> consumed	In the order of
	by boiler(s) [tCO ₂ /GJ]	preference:
		a) values provided by the
		fuel supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values published
		by the Ministry of
		Energy and Mineral
		Resources, Indonesia;
		d) IPCC default values
		provided in table 1.4 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		value is applied.
TDW_{RE}	Temperature of hot water recovered by reference	Default value set in the
	drain recovery system [degrees C]	methodology
	A value of 100 °C is applied, because reference drain	
	recovery system is assumed to be an opening one.	
$TFW_{RE,p}$	Reference temperature of boiler feed water including	Default value
	both of makeup feed water and hot water recovered	
	by the project closed drain recovery system [degrees	
	C]	
	(In case that $TDW_{PJ,p}$ is not monitored, a value of	

	100 °C is applied in conservative manner.)	
TMW	Temperature of makeup feed water into boiler(s)	Climate data tool in the
	[degrees C]	world (ClimatView
		Monthly statistic)
	A value of 30.3 [degrees C] is applied in	by Japan Meteorological
	conservative manner based on the highest value in	Agency
	the monthly average atmospheric temperatures for 2	
	years (November 2018 – October 2020) in Jakarta,	
	Medan, Palembang, Barikpapan, Semarang,	
	Denpasar, Cirebon, Serang, Tegal, Cilacap and	
	Curag.	