Joint Crediting Mechanism Approved Methodology ID_AM004 "Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store"

A. Title of the methodology

Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store, Version <u>32.010</u>

B. Terms and definitions

Terms	Definitions
Inverter-type air conditioning	Inverter-type air conditioning system is a type of air
system	conditioning system which contains inverter, an apparatus
	to control the speed of the compressor motor in order to
	maintain the ambient temperature. While the compressor in
	a non-inverter-type air conditioning system can only either
	operates in maximum capacity or stops entirely, the
	compressor in an inverter-type air conditioning system
	operates at adjustable speeds.
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity
(COP)	per rated power consumption of the air conditioning system.
	The values of cooling capacity and rated power
	consumption are defined under specific temperature stated
	in ISO 5151:2010.
Cooling capacity	Cooling capacity is the ability of air conditioning system to
	remove heat, calculated with amount of heat removed per
	unit time at specific temperature.

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology applies to the project that aims for saving
measures	energy by introducing inverter-type air conditioning system for
	cooling for grocery store in Indonesia.

Calculation of reference	Reference emissions are GHG emissions from using reference air	
emissions	conditioning system, calculated with power consumption of	
	project air conditioning system, ratio of COPs of project/reference	
	air conditioning system, and CO ₂ emission factor for consumed	
	electricity.	
Calculation of project	Project emissions are GHG emissions from using project air	
emissions	conditioning system, calculated with power consumption of	
	installed inverter-type air conditioning system, and CO ₂ emission	
	factor for consumed electricity.	
Monitoring parameters	Power consumption of project air conditioning system	

1

D. Eligibility criteria				
This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	Single split inverter-type air conditioning system ¹ is newly installed or installed			
	to replace existing air conditioning syste	m fo	r grocery store whose	selling area is
	less than 400 (four hundred) m ² .			
Criterion 2	The installed air conditioning system is	wall	mounted type and/or c	eiling
	cassette type, and has a COP value high	er tha	in that of the value indi	cated in the
	table below.			
	Cooling Capacity[kW]		Reference COF	
	<u>2.6<x≤5.6< u=""></x≤5.6<></u>		<u>3.83</u>	
	<u>5.6<x≤6.8< u=""> <u>3.61</u></x≤6.8<></u>			
	<u>6.8<x≤< u="">12<u>.</u>5 <u>3.29</u></x≤<></u>			
	<u>12.5<x≤14.12< u=""> <u>3.01</u></x≤14.12<></u>			
	·			
	Cooling Capacity [k]	VI	Reference COP	
	$2.5 < x \le 4.1$		4.00	
	$4.1 < x \le 5.3$ 3.59			
	$5.3 < x \le 7.1$ 2.96			
	$7.1 < x \le 14.2 \qquad 2.85$			
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for the installed air			
	conditioning system is 0 (zero).			
Criterion 4	A plan for not releasing refrigerant use	ed for	r project air condition	ing system is

 $^{^{1\,}}$ Under the single split system, one indoor unit is connected to one outdoor unit.

prepared. In the case of replacing the existing air conditioning system with the project air conditioning system, a plan is prepared in which refrigerant used for the existing air conditioning system is not released to the air e.g. re-use of the refrigerant. Execution of the prevention plan is checked at the time of verification, in order to confirm that refrigerant used for the existing one replaced by the project is not released to the air.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference air conditioning system	CO_2	
Project emissions		
Emission sources	GHG types	
Power consumption by project air conditioning system	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with power consumption of project air conditioning system, ratio of COPs of project/reference air conditioning system, and CO₂ emission factor for electricity consumed.

The COP of reference air conditioning system is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- 1. The COP value tends to decrease as the cooling capacity increases.
- 2. The reference COP, at a certain cooling capacity, is set at a maximum value in the respective cooling capacity range.
- 3. The maximum values of COP in the respective cooling capacity ranges are defined as COP_{RE} .

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{EC_{PJ,i,p} \times (COP_{PJ,i} \div COP_{RE,i})\} \times EF_{elec}$$

RE_p	: Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Power consumption of project air conditioning system i during the period p
	[MWh/p]
$COP_{PJ,i}$: COP of project air conditioning system <i>i</i> [-]
$COP_{RE,i}$: COP of reference air conditioning system <i>i</i> [-]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Type of air conditioning system [-]

G. Calculation of project emissions

$PE_{p} = \sum_{i} EC_{PJ,i,p} \times EF_{elec}$		
PE_p	: Project emissions during the period p [tCO ₂ /p]	
$EC_{PJ,i,p}$: Power consumption of project air conditioning system <i>i</i> during the period <i>p</i> [MWh/p]	
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]	
i	: Type of air conditioning system [-]	

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$		
ER_p	: Emissions reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of Data	Source
	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project air conditioning system consumes	Updates on Grid Electricity
EF_{elec}	only grid electricity or captive electricity, the	Emission Factors
	project participant applies the CO ₂ emission factor	(calculated in year 2013),
	respectively.	National Committee on

	When project air condition		Clean Development	
	consume both grid electric	ity and captive	Mechanism, Indonesia,	
	electricity, the project part	icipant applies the CO ₂	unless otherwise instructed	
	emission factor with lower	by the Joint Committee.		
	[CO ₂ emission factor]		[Captive electricity]	
	For grid electricity: The m	ost recent value	CDM approved small scale	
	available from the source s	stated in this table at the	methodology AMS-I.A	
	time of validation			
	For captive electricity: 0.8	* [tCO ₂ /MWh]		
	*The most recent value av	ailable from CDM		
	approved small scale meth	odology AMS-I.A at the		
	time of validation is applie	ed.		
	COP of reference air condi	tioning system <i>i</i> , as	Nominal value available on	
	indicated in Table 212 of a	dditional information.	product catalogs,	
	The values of cooling capa	ncity and rated power	specification documents or	
	consumption used in the ca	websites.		
	obtained from product catalogs, specification			
	documents or website of n	najor manufacturers in	The default values are-	
	Indonesia.	Indonesia.		
			survey on COP of air-	
	Table <u>21</u> 2 : COF	conditioning system from-		
	Air Conditioning S	System (COP _{<i>RE,i</i>})	manufacturers that have-	
	Cooling Capacity[kW]	<u>Reference COP</u>	high market share. The-	
$COP_{RE,i}$	<u>2.6≤x≤5.6</u>	<u>3.83</u>	default values should be-	
	<u>5.6≤x≤6.8</u>	<u>3.61</u>	revised if necessary from-	
	<u>6.8≤x≤</u> 12 <u>.</u> 5	<u>3.29</u>	survey result which is	
	<u>12.5≤x≤14.1</u> 2	<u>3.01</u>	conducted by JC or project	
			participants every three-	
	i Cooling capacity [k	W] Reference COP	years. The survey should	
	$\frac{1}{2.5 \text{kW} < x \leq 4.1 \text{kW}}$	¥ 4.00	prove the use of clear	
	$\frac{2}{4.1kW < x \le 5.3kW}$	¥ 3.59	methodology. <u>The default</u>	
	3 5.3kW <x≦7.1kw< td=""><td>¥ <u>2.96</u></td><td>COP values should be</td></x≦7.1kw<>	¥ <u>2.96</u>	COP values should be	
	$4 \qquad 7.1 \text{kW} < x \le 14.2 \text{k}$	₩ <u>2.85</u>	revised if necessary from	
			survey result which is	
			conducted by JC or project	
			participants	

1

	COP of project air conditioning system <i>i</i> . The	Specifications of project air
	value of cooling capacity and rated power	conditioning system for the
$COP_{PJ,i}$	consumption used in the calculation of COP	quotation or factory
	prepared by manufacturer is applied.	acceptance test data by
		manufacturer.

History of the document

Version	Date	Contents revised	
<u>032.01</u>	TBD	TBD	
02.0	10 November 2015	Electronic decision by the Joint Committee Revisions to:	
		 Change the description of Criterion 4 in Section D; and Change the description of "Measurement methods and procedures" for the power consumption of project air conditioning system in the Monitoring Spreadsheet. 	
01.0	30 October 2014	JC3, Annex 5 Initial approval.	