Joint Crediting Mechanism Approved Methodology ID_AM004 "Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store"

A. Title of the methodology

Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store, Version 3.0

B. Terms and definitions

Terms	Definitions	
Inverter-type air conditioning	Inverter-type air conditioning system is a type of air	
system	conditioning system which contains inverter, an apparatus	
	to control the speed of the compressor motor in order to	
	maintain the ambient temperature. While the compressor in	
	a non-inverter-type air conditioning system can only either	
	operates in maximum capacity or stops entirely, the	
	compressor in an inverter-type air conditioning system	
	operates at adjustable speeds.	
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity	
(COP)	per rated power consumption of the air conditioning system.	
	The values of cooling capacity and rated power	
	consumption are defined under specific temperature stated	
	in ISO 5151:2010.	
Cooling capacity	Cooling capacity is the ability of air conditioning system to	
	remove heat, calculated with amount of heat removed per	
	unit time at specific temperature.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures	energy by introducing inverter-type air conditioning system for	
	cooling for grocery store in Indonesia.	

Calculation of reference	Reference emissions are GHG emissions from using reference air	
emissions	conditioning system, calculated with power consumption of	
	project air conditioning system, ratio of COPs of project/reference	
	air conditioning system, and CO ₂ emission factor for consumed	
	electricity.	
Calculation of project	Project emissions are GHG emissions from using project air	
emissions	conditioning system, calculated with power consumption of	
	installed inverter-type air conditioning system, and CO ₂ emission	
	factor for consumed electricity.	
Monitoring parameters	Power consumption of project air conditioning system	

D. Eligibility criteria			
This methodology is applicable to projects that satisfy all of the following criteria.			
Criterion 1	Single split inverter-type air conditioning system ¹ is newly installed or installed		
	to replace existing air conditioning system for grocery store whose selling area is		
	less than 400 (four hundred) m^2 .		
Criterion 2	The installed air conditioning system is wall mounted type and/or ceiling		
	cassette type, and has a COP value high	er than that of the value indicated in the	
	table below.		
	Cooling Capacity[kW] Reference COP		
	2.6 <x≤5.6 3.83<="" th=""></x≤5.6>		
	5.6≤x≤6.8 3.61		
	6.8≤x≤12.5 3.29		
	12.5< x≤14.1	3.01	
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for the installed air		
	conditioning system is 0 (zero).		
Criterion 4	A plan for not releasing refrigerant used for project air conditioning system is		
	prepared. In the case of replacing the existing air conditioning system with the		
	project air conditioning system, a plan is prepared in which refrigerant used for		
	the existing air conditioning system is not released to the air e.g. re-use of the		
	refrigerant. Execution of the prevention plan is checked at the time of		
	verification, in order to confirm that refrigerant used for the existing one		
	replaced by the project is not released to the air.		

¹ Under the single split system, one indoor unit is connected to one outdoor unit.

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Power consumption by reference air conditioning system	CO_2	
Project emissions		
Emission sources	GHG types	
Power consumption by project air conditioning system	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with power consumption of project air conditioning system, ratio of COPs of project/reference air conditioning system, and CO₂ emission factor for electricity consumed.

The COP of reference air conditioning system is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- 1. The COP value tends to decrease as the cooling capacity increases.
- 2. The reference COP, at a certain cooling capacity, is set at a maximum value in the respective cooling capacity range.
- 3. The maximum values of COP in the respective cooling capacity ranges are defined as COP_{RE} .

F.2. Calculation of reference emissions

	$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (COP_{PJ,i} \div COP_{RE,i}) \} \times EF_{elec}$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Power consumption of project air conditioning system <i>i</i> during the period <i>p</i> [MWh/p]
$COP_{PJ,i}$: COP of project air conditioning system <i>i</i> [-]
$COP_{RE,i}$: COP of reference air conditioning system <i>i</i> [-]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Type of air conditioning system [-]

G. Calculation of project emissions

$PE_p = \sum_i EC_{PJ,i,p} \times EF_{elec}$			
PE_p	: Project emissions during the period p [tCO ₂ /p]		
$EC_{PJ,i,p}$: Power consumption of project air conditioning system i during the period p		
	[MWh/p]		
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]		
i	: Type of air conditioning system [-]		

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$		
ER_p	: Emissions reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of Data	Source
	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project air conditioning system consumes	Updates on Grid Electricity
	only grid electricity or captive electricity, the	Emission Factors
	project participant applies the CO ₂ emission factor	(calculated in year 2013),
	respectively.	National Committee on
	When project air conditioning system may	Clean Development
EF_{elec}	consume both grid electricity and captive	Mechanism, Indonesia,
	electricity, the project participant applies the CO ₂	unless otherwise instructed
	emission factor with lower value.	by the Joint Committee.
	[CO ₂ emission factor]	[Captive electricity]
	For grid electricity: The most recent value	CDM approved small scale
	available from the source stated in this table at the	methodology AMS-I.A

	time of validation		
	For captive electricity: 0.8*		
	*The most recent value ava		
	approved small scale method	odology AMS-I.A at the	
	time of validation is applied	d.	
	COP of reference air condi	tioning system <i>i</i> , as	Nominal value available on
	indicated in Table 2. The v	values of cooling	product catalogs,
	capacity and rated power c	onsumption used in the	specification documents or
	calculation of COP are obta	ained from product	websites.
	catalogs, specification documents or website of		
	major manufacturers in Indonesia.		The survey should prove the
COD			use of clear methodology.
$COP_{RE,i}$	Table 2 : COP for Reference		The default COP values
	Air Conditioning System (COP _{RE,i})		should be revised if
	Cooling Capacity[kW]	Reference COP	necessary from survey result
	2.6≤x≤5.6	3.83	which is conducted by JC or
	5.6 <x≤6.8< td=""><td>3.61</td><td>project participants</td></x≤6.8<>	3.61	project participants
	6.8 <x≤12.5< td=""><td>3.29</td><td></td></x≤12.5<>	3.29	
	12.5< x≤14.1	3.01	
	COP of project air conditioning system <i>i</i> . The		Specifications of project air
	value of cooling capacity and rated power		conditioning system for the
$COP_{PJ,i}$	consumption used in the calculation of COP		quotation or factory
	prepared by manufacturer is applied.		acceptance test data by
			manufacturer.
$COP_{PJ,i}$	consumption used in the ca	lculation of COP	quotation or factory acceptance test data by

History of the do	ocument
-------------------	---------

Version	Date	Contents revised	
03.0	18 December 2024	JC10	
		Revision to:	
		• Update the threshold COP values in Criterion 2 and Data	
		and Parameters fixed ex ante and the default COP value	
		due to the improved efficiency of air conditioning system	
		currently available in the local market since its initial	
		approval of the methodology.	
02.0	10 November 2015	Electronic decision by the Joint Committee	
		Revisions to:	
		• Change the description of Criterion 4 in Section D; and	
		• Change the description of "Measurement methods and	
		procedures" for the power consumption of project air	

		conditioning system in the Monitoring Spreadsheet.
01.0	30 October 2014	JC3, Annex 5
		Initial approval.