Joint Crediting Mechanism Approved Methodology ID_AM028 "Energy saving by introducing waste hot water recovery system to autoclave in infusion manufacturing process line"

A. Title of the methodology

Energy saving by introducing waste hot water recovery system to autoclave in infusion manufacturing process line Ver. 01.0

B. Terms and definitions

Terms	Definitions	
Infusion manufacturing process	A process line for sterilizing medical infusion fluid packs	
line (IMP line)	with hot water consisting of autoclave, water storage tank,	
	pump, heat exchanger, which meets the standards for	
	manufacturing control and quality control required in GMP	
	guideline (Good Manufacturing Practice Guide for Active	
	Pharmaceutical Ingredients).	
Waste hot water recovery system	A system in which waste hot water drained from an	
	autoclave is recovered and recycled in an IMP line	
Recovery pump	A pump for waste hot water recovery system, which sends	
	recovered waste hot water to a storage tank	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Installation of waste hot water recovery system to an IMP line	
measures	reduces the amount of steam supplied by a boiler for heating	
	water. It leads to reduction of fuel consumed by the boiler for	
	generating steam, which consequently leads to GHG emission	
	reductions.	
Calculation of reference	Reference emissions are calculated with the quantity of steam	
emissions	supplied to the heat exchanger, the ratio of heat quantity	
	required under the project condition and the reference	

	condition, the ratio of temperature difference under the project	
	condition and the reference condition, fuel consumption by the	
	boiler, net calorific value of fuel consumed by the boiler, total	
	quantity of steam generated by the boiler supplying steam to the	
	heat exchanger in the project IMP line, and GHG emission	
	factor of fuel consumed by the boiler.	
Calculation of project	Project emissions are GHG emissions from using a recovery	
emissions	pump for hot water recovery system in the project IMP line,	
	calculated with electricity consumption by the recovery pump	
	and GHG emission factor for consumed electricity.	
Monitoring parameters	• Total number of batch processes implemented in the project	
	IMP line	
	• Total number of the drainage from the project autoclave	
	• Total quantity of steam supplied to the heat exchanger	
	• Total quantity of steam generated by the boiler supplying	
	steam to the heat exchanger in the project IMP line	
	• Fuel consumption by the boiler supplying steam to the heat	
	exchanger in the project IMP line	
	• Electricity consumption of the recovery pump for the	
	project waste hot water recovery system	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Waste hot water recovery system is newly installed to an autoclave(s) in an
	infusion manufacturing process line (IMP line).

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fuel consumption by reference boiler	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity consumption by recovery pump to recover waste hot water	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on: the quantity of steam supplied to the heat exchanger; the ratio of heat quantity required under the project condition and the reference condition; the ratio of temperature difference under the project condition and the reference condition; fuel consumption by the boiler; net calorific value of fuel consumed by the boiler; total quantity of steam generated by the boiler supplying steam to the heat exchanger in the project IMP line; CO_2 emission factor for fuel consumed by boiler to supply steam to the heat exchanger in the project IMP line.

In the water cycle of the reference system, pure water is produced and drained in each batch process. On the other hand, in the water cycle of the project system, pure water is produced at the first batch process, then recovered and reused for multiple batch processes. Therefore, the electricity consumption for producing pure water is reduced in the project system compared to the reference system. Net emission reductions are ensured by excluding the emission reductions by the reduction of the electricity consumption for producing pure water.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \left\{ QS_{PJ,i,p} \times \frac{HQW_{PJ,recovery,i,p}}{HQW_{PJ,total,i,p}} \times \left(\frac{\Delta T_{RE}}{\Delta T_{PJ,i}} - 1\right) \right\}$$
$$\times \frac{\sum_{k} (FC_{PJ,k,p} \times NCV_{fuel,k} \times EF_{fuel,PJ,k})}{\sum_{k} QS_{PJ,k,p}}$$
$$HQW_{PJ,totali,p} = HQW_{PJ,recovery,i,p} + HQW_{PJ,drain,i,p}$$
$$HQW_{PJ,recovery,i,p} = WI_{PJ,i} \times (N_{PJ,i,p} - D_{PJ,i,p}) \times SG_{PJ} \times SH_{PJ} \times \Delta T_{PJ,i} \div 10^{6}$$
$$HQW_{PJ,drain,i,p} = WI_{PJ,i} \times D_{PJ,i,p} \times SG_{PJ} \times SH_{PJ} \times \Delta T_{RE} \div 10^{6}$$

Where:

 RE_p Reference emissions during the period p [tCO2/p] $FC_{PJ,k,p}$ Fuel consumption by the boiler k during the period p [mass or

	volume/p]
NCV _{fuel,k}	Net calorific value of fuel consumed by the boiler k [GJ/mass or volume]
$QS_{PJ,i,p}$	Total quantity of steam supplied to the heat exchanger in the project
	IMP line <i>i</i> during the period p [t/p]
$QS_{PJ,k,p}$	Total quantity of steam generated by the boiler k during the period p [t/p]
$HQW_{PJ,total,i,p}$	Total heat quantity required for heating water to the temperature
	specified in GMP guideline, in the project IMP line <i>i</i> during the period p [GJ/p]
$HQW_{PJ,recovery,i,p}$	Heat quantity required for heating recovered hot water to the
	temperature specified in GMP guideline, in the project IMP line <i>i</i>
	during the period p [GJ/p]
$HQW_{PJ,drain,i,p}$	Heat quantity required for heating pure water in the first batch after
	drainage to the temperature specified in GMP guideline, in the
	project IMP line i during the period p [GJ/p]
$\Delta T_{PJ,i}$	Temperature difference between the temperature specified in GMP
	guideline and the temperature of recovered hot water flowing into the
	heat exchanger in the project IMP line <i>i</i> [degree Celsius]
ΔT_{RE}	Temperature difference between the temperature specified in GMP
	guideline and the temperature of pure water flowing into the heat
	exchanger in the first batch after drainage [degree Celsius]
$WI_{PJ,i}$	Water quantity per a batch process consumed in the project IMP line
	<i>i</i> [L/time]
$N_{PJ,i,p}$	Total number of batch processes implemented in the project IMP line
	<i>i</i> during the period <i>p</i> [times/p]
$D_{PJ,i,p}$	Total number of hot water drainage from the project IMP line i
	during the period <i>p</i> [times/p]
SG_{PJ}	Specific gravity of pure water [kg/L]
SH_{PJ}	Specific heat of water under the project condition [kJ/kg/degree
	Celsius]
$EF_{fuel,PJ,k}$	CO_2 emission factor for fuel consumed by the boiler k [tCO ₂ /GJ]
i	Identification number of the project IMP line
k	Identification number of the boiler supplying steam to the heat
	exchanger in the project IMP line

G. Calculation of project emissions

$$PE_p = \sum_{i} \sum_{j} EC_{PJ,i,j,p} \times EF_{elec}$$

Where:	
PE_p	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,j,p}$	Electricity consumption by the project recovery pump <i>j</i> in the project IMP line
	<i>i</i> during the period <i>p</i> [MWh/p]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	Identification number of the project IMP line
j	Identification number of project recovery pump in the project IMP line
If $EC_{PJ,i,j,p}$	is not monitored, it is calculated by the following equation.
	$EC_{PJ,i,j,p} = RPC_{PJ,i,j} \div 1000 \times N_{PJ,i,p} \times OH_{PJ,i,j}$
Where:	
$EC_{PJ,i,j,p}$	Electricity consumption by the project recovery pump <i>j</i> in the project IMP line
	<i>i</i> during the period p [MWh/p]
RPC _{PJ,i,j}	Rated power consumption of the project recovery pump j in the project IMP
	line <i>i</i> [kW]
$N_{PJ,i,p}$	Total number of batch processes implemented in the project IMP line <i>i</i> during
	the period <i>p</i> [times/p]
OH _{PJ,i,j}	Operating hours per a batch process of the project recovery pump j in the
	project IMP line <i>i</i> [h/time]
i	Identification number of the project IMP line

j Identification number of project recovery pump in the project IMP line

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$		
Where:		
ER_p	: Emission reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity	[Grid electricity]
	[tCO ₂ /MWh]	The data is sourced from
		"Emission Factors of
	When the recovery pump consumes only grid	Electricity Interconnection
	electricity or captive electricity, the project	Systems", National
	participant applies the CO2 emission factor	Committee on Clean
	respectively.	Development Mechanism
	When the recovery pump consumes both grid	(Indonesian DNA for
	electricity and captive electricity, the project	CDM), based on data
	participant applies the CO2 emission factor	obtained by Directorate
	with higher value.	General of Electricity,
		Ministry of Energy and
	[CO2 emission factor]	Mineral Resources,
	For grid electricity: the most recent value	Indonesia, unless otherwise
	available from the source stated in this table at	instructed by the Joint
	the time of validation.	Committee.
	For captive electricity, it is determined based	[Captive electricity]
	on the following options:	For the option a)
		Specification of the captive
	a) Calculated from its power generation	power generation system
	efficiency (η_{cap} [%]) obtained from	provided by the
	manufacturer's specification	manufacturer (η_{cap} [%]).
	The power generation efficiency based on	CO ₂ emission factor of the
	lower heating value (LHV) of the captive	fuel consumed by the
	power generation system from the	captive power generation
	manufacturer's specification is applied;	system (<i>EF_{fuel,cap}</i>
	$EF_{\text{slog}} = 3.6 \times \frac{100}{100} \times EF_{\text{slog}}$	[tCO ₂ /GJ]) in order of
	η_{cap}	preference:
		1) values provided by the
	b) Calculated from measured data	fuel supplier;
	The power generation efficiency calculated	2) measurement by the
	from monitored data of the amount of fuel input	project participants;
	for power generation $(FC_{cap,p})$ and the amount	3) regional or national

of electricity generated $(EG_{cap,p})$ during the	default values;
monitoring period p is applied. The	4) IPCC default values
measurement is conducted with the monitoring	provided in table1.4 of Ch.1
equipment to which calibration certificate is	Vol.2 of 2006 IPCC
issued by an entity accredited under	Guidelines on National
national/international standards;	GHG Inventories. Upper
$EF_{elec} = FC_{cap,p} \times NCV_{fuel,cap} \times EF_{fuel,cap}$	value is applied.
× <u>1</u>	
$\widehat{EG}_{cap,p}$	For the option b)
Where:	Generated and supplied
<i>NCV_{fuel,cap}</i> : Net calorific value of the fuel	electricity by the captive
consumed by the captive power generation	power generation system
system [GJ/mass or volume]	$(EG_{cap,p} [MWh/p]).$
	Fuel amount consumed by
c) <u>Conservative default value:</u>	the captive power generation
A value of $1.3 \text{ tCO}_2/\text{MWh}$ is applied.	system ($FC_{cap,p}$ [mass or
	volume/p]).
	Net calorific value
	(<i>NCV_{fuel,cap}</i> [GJ/mass or
	volume]) and CO ₂ emission
	factor of the fuel $(EF_{fuel,cap})$
	[tCO ₂ /GJ]) in order of
	preference:
	1) values provided by the
	fuel supplier;
	2) measurement by the
	project participants;
	3) regional or national
	default values;
	4) IPCC default values
	provided in tables 1.2 and
	1.4 of Ch.1 Vol.2 of 2006
	IPCC Guidelines on
	National GHG Inventories.
	Upper value is applied.
	For the option c)

		CDM methodological tool
		"TOOL 05: Baseline, project
		and/or leakage emissions
		from electricity consumption
		and monitoring of electricity
		generation, version 03.0"
EF _{fuel,PJ,k}	CO ₂ emission factor for fuel consumed by the	IPCC default value
	boiler k [tCO ₂ /GJ]	provided in table 1.4 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		limit value is applied.
NCV _{fuel,k}	Net calorific value of fuel consumed by the	In the order of preference:
	boiler k [GJ/mass or volume]	a) value provided by fuel
		supplier;
		b) value measured by the
		project participants;
		c) regional or national
		default
		value; or
		d) IPCC default value
		provided in table 1.2 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		value is applied.
$\Delta T_{PJ,i}$	Temperature difference between the	Monitored data.
	temperature specified in the GMP guideline	
	and the temperature of recovered hot water	
	flowing into the heat exchanger in the project	
	IMP line <i>i</i> [degree Celsius]	
	$\Delta T_{PJ,i}$ is set <i>ex-ante</i> or <i>ex-post</i> by averaging the	
	data monitored for at least 30 batches at	
	recovered hot water tank.	
ΔT_{RE}	Temperature difference between the	Monitored data.
	temperature specified in the GMP guideline	

	and the temperature of pure water flowing intothe heat exchanger in the first batch afterdrainage [degree Celsius] ΔT_{RE} is set <i>ex-ante</i> or <i>ex-post</i> by averaging the	
	data monitored for at least 30 days at pure water tank.	
SG _{PJ}	Specific gravity of pure water [kg/L]	Theoretical value.
SH _{PJ}	Specific heat of water under the project condition [kJ/(kg*K)] SH _{PJ} 4.184	Theoretical value provided in table 6 of Cabinet Order No. 357 of 1992, Japan
WI _{PJ,i}	Water quantity per a batch process of autoclave in the project IMP line <i>i</i> [L/time]	Specification of the autoclave in the project IMP line <i>i</i> .
RPC _{PJ,i,j}	Rated power consumption of the project recovery pump <i>j</i> in the project IMP line <i>i</i> [kW]	Specification of the recovery pump <i>j</i> in the project IMP line <i>i</i> .
OH _{PJ,i,j}	Operating hours per a batch process of the project recovery pump <i>j</i> in the project IMP line <i>i</i> [h/time] $OH_{PJ,i,j}$ is set <i>ex-ante</i> or <i>ex-post</i> by averaging the data monitored for at least 30 batches at recovery pump	Monitored data.

History of the document

Version	Date	Contents revised
01.0	17 February 2021	Electronic decision by the Joint Committee
		Initial approval.