JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia	
Name of the methodology proponents	AURA Green Energy CO., Ltd	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable / non-	
Methodology applies	renewable sources)	
Title of the proposed methodology, and	Electricity generation by a biomass power	
version number	plant Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	25/11/2020	

History of the proposed methodology

Version	Date	Date Contents revised			
01.0	25/11/2020	First edition			

A. Title of the methodology

Electricity generation by a biomass power plant Version 01.0

B. Terms and definitions

Terms	Definitions
Biomass power plant	An electrical power plant which produces electricity through
	biomass combustion in a boiler and a steam generator that
	heats water to produce steam which then flows through steam
	turbines that spin an electrical generator to generate electricity.
Solid biomass fuel	A source of energy made of biological materials including
	wood, sawdust and crop waste, whose states of matter are
	neither liquid nor gas.

C. Summary of the methodology

Items	Summary
GHG emission reduction	Displacement of grid electricity including national/regional and
measures	isolated grid and/or captive electricity by installing and
	operating a biomass power plant.
Calculation of reference	Reference emissions are calculated from net electricity
emissions	generation by a biomass power plant multiplied by a $\ensuremath{\text{CO}}_2$
	emission factor of grid electricity and/or captive electricity.
Calculation of project	Project emissions include the emissions from combustion of
emissions	solid biomass fuels in a biomass power plant, the emissions
	from combustion of fossil fuel at a biomass power plant and the
	emissions from transportation of solid biomass fuels.
	[Emissions from biomass fuel combustion]
	The emissions resulting from combustion of solid biomass fuels
	are zero since they are carbon neutral.
	[Emissions from fossil fuel combustion]

	-
	The emissions from combustion of fossil fuel at a biomass
	power plant are calculated from the amount of fossil fuel
	consumption and a CO ₂ emission factor of the fuel.
	[Emissions from transportation of sold biomass fuels]
	The emissions from transportation of solid biomass fuels are
	calculated from the amount of fossil fuel consumption by the
	transportation and a CO ₂ emission factor of the fuel, if
	applicable. If not applicable, the emissions from transportation
	of solid biomass fuels are calculated from total mass of freight
	transported from each collecting site and distance between each
	collecting site and a biomass power plant.
Monitoring parameters	• Net quantity of electricity generated by a biomass power
	plant
	• On-site consumption of fossil fuel for operating a biomass
	power plant
	Consumption of fossil fuel by transportation, if applicable
	• Round trip distance between collecting site and a biomass
	power plant, if applicable
	• Total mass of freight transported from collecting site, if
	applicable

D. Eligibility criteria	
-------------------------	--

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	A biomass power plant is newly installed on the project site.	
Criterion 2	The project uses only solid biomass fuels made of biomass residues.	
Criterion 3	Biomass residues utilized for the project are not used for energy and non-	
	energy applications in absence of the project activity. This can be	
	demonstrated by the letter from suppliers of biomass residues.	

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types

Grid electricity and/or captive power generation	CO ₂
Project emissions	
Emission sources	GHG types
Biomass fuel combustion in a biomass power plant	N/A
Fossil fuel consumption for operating a biomass power plant	CO ₂
Fossil fuel consumption by transportation of solid biomass fuels and/or	CO ₂
materials of solid biomass fuels from collecting sites to a biomass power	
plant	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factors are set in a conservative manner for the Indonesian regional grids. The default emission factors are calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run (LCMR) resources for each regional grid in Indonesia during the year 2016-2018 and refers to the conservative emission factor of each fossil fuel power plant to secure net emission reductions. The conservative emission factor of each plant is calculated as 0.795 tCO₂/MWh for coal-fired power plant and 0.315 tCO₂/MWh for gas-fired power plant based on the survey on heat efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated as 0.533 tCO₂/MWh based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case a biomass power plant in a proposed project activity is directly connected or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid (Case 1), the value of operating margin including LCMR resources, calculated using the best heat efficiency among currently operational plants in Indonesia for the emission factors of fossil fuel power plants, is applied.

In case a biomass power plant in a proposed project activity is connected to an internal grid connecting to both a national/regional, and an isolated grid and/or a captive power generator (Case 2), the lower value between emission factors of "Emission factor for Case 1 (tCO₂/MWh)" and the conservative emission factor of diesel-fired power plant of 0.533 tCO₂/MWh is applied.

In case a biomass power plant in a proposed project activity is only connected to an internal

grid connecting to an isolated grid and/or a captive power generator (Case 3), the emission factor of a diesel generator calculated by applying a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel generator is applied, which is set as $0.533 \text{ tCO}_2/\text{MWh}$.

The emission factors to be applied for each case are explained in the Section I.

F.2. Calculation of reference emissions

$RE_p = NI$	$EG_p \times EF_{RE,elec}$	
Where		
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
NEG_p	: Net quantity of electricity generated by a project biomass power	
	plant during the period p [MWh/p]	
$EF_{RE,elec}$: CO ₂ emission factor of national/regional and isolated grids and/or	
	captive electricity [tCO ₂ /MWh]	
NEG_p is a difference between quantity of gross generated electricity and quantity of electricity consumed by a project biomass power plant (e.g., building, plant, etc) during the		
period <i>p</i> .		

G. Calculation of project emissions

PE_p	=	$PE_{ONSITE,p} + PE_{TRANS,p}$
--------	---	--------------------------------

Where

PE_p	:	Project emissions during the period p [tCO ₂ /p]
$PE_{ONSITE,p}$:	Project emissions by on-site consumption of fossil fuel for operating a
		biomass power plant during the period p [tCO ₂ /p]
$PE_{TRANS,p}$:	Project emissions by transportation activity of solid biomass fuels from
		collecting sites to a biomass power plant during the period p [tCO ₂ /p]
	1	1, 1, 1, 1

 $PE_{ONSITE,p}$ is calculated as below.

$$PE_{ONSNITE_{P}} = \sum_{i} FC_{ONSITE_{i,P}} \times NCV_{i} \times EF_{fuel,i}$$
Where
$$FC_{ONSTTE_{i,P}} : On-site consumption of fossil fuel i for operating a biomass power
plant during the period p [mass or volume/p]
$$NCV_{i} : Net calorific value of fossil fuel i used for operating a biomass power
plant [GJ/mass or volume]
$$EF_{pacl_{j}} : CO_{2} \text{ emission factor of fossil fuel i [tCO_{2}/GJ]}$$
i Indication number of fossil fuel *i* ype [-]
$$PE_{TRANS,p} \text{ is calculated using one of the following options.}$$
Option 1 : Monitoring fuel consumption
$$PE_{TRANS,p} = \sum_{f} FC_{TRANS,j,p} \times NCV_{j} \times EF_{fuel,j}$$
Where
$$FC_{TRANS,j,p} : CO_{2} \text{ emission factor of fossil fuel j by transportation during the period p
[mass or volume/p]
$$NCV_{i} : Net calorific value of fossil fuel j used for transportation activity of
solid biomass fuels to a biomass power plant [GJ/mass or volume]
$$EF_{pacl_{j}} : CO_{2} \text{ emission factor of fossil fuel j [tCO_{2}/GJ]}$$

$$j : Indication number of fossil fuel j [tCO_{2}/GJ]$$

$$j : Indication number of fossil fuel j power plant [GJ/mass or volume]
$$PE_{TRANS,p} = \sum_{k} \sum_{l} D_{k} \times FR_{k,l,p} \times EF_{vel,l,cl,l}$$
Where
$$D_{k} : Round trip distance between collecting site k and a biomass power
plant [km]
$$FR_{k,l,p} : Total mass of freight transported from collecting site k by vehicle type l
$$during the period p [ton/p]
$$EF_{vel,led} : CO_{2} emission factor of vehicle type l [tCO_{2}/ton-km]
$$k : Indication number of collecting site [-]$$$$$$$$$$$$$$$$$$$$

*If the round trip distance between collecting site k and a biomass power plant (D_k) is less than 200km and the total rated electrical output capacity of the project biomass power plant is equal to or less than 15 MW, the emissions from the transportation may be neglected.

H. Calculation of emissions reductions

$ER_p =$	$RE_p - PE_p$
Where	
ER_p	: Emission reductions during the period <i>p</i> [tCO ₂ /p]
RE_p	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period $p [tCO_2/p]$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data		Source
$EF_{RE,elec}$	CO ₂ emission factor of national/region	onal and isolated	Default values are
	grids and/or captive electricity [tCO2	/MWh]	provided in the
			additional information.
	The value for $EF_{RE,elec}$ is selected from	om the emission	Once the default values
	factor based on the national/regional	grid ($EF_{RE,grid}$) or	are revised, the revised
	based on isolated grid and/or a capt	ive diesel power	values are applied.
	generator $(EF_{RE,cap})$ in the following		
	In case a biomass power plant in a	proposed project	
	activity is directly connected, or c	onnected via an	
	internal grid not connecting to either	r an isolated grid	
	or a captive power generator, to a	national/regional	
	grid (Case 1), $EF_{RE,grid}$ is set as follow		
		Emission factor (tCO ₂ /MWh)	
	Jamali, 3 Nusa, and Karimun Jawa grids	0.619	

S (1	0.459	
Sumatra grid	0.458	
Nilas and Plau Tello grids	0.533	
Siberut, Siberut Utara, Sipora, and	0.529	
Pagai Selatan grids		
Alai, Batam, Batam-Tanjung	0.499	
Pinang, Durai, Kelong, Ladan,		
letung, Midai, Moro, Penuba,		
Ranai, Sedanau, Serasan,		
Tambelan, Tanjung Balai		
Karimun, Tanjung Batu, and		
Tarempa grids		
	0 5 4 5	
Bengkalis, Benteng, Concong	0.545	
Luar, Kota Lama, Lemang, Selat		
Panjang, Sungai Guntung,		
Tanjung Samak, Teluk Dalam,		
Teluk Ketapang, and Masohi grids		
Bangka and Belitung grids	0.628	
Barito grid	0.653	
Khatulistiwa grid	0.549	
Mahakam and Tarakan grids	0.534	
Sulutgo grid	0.274	
Sulselbar grid	0.243	
Kendari, Bau Bau, Kolaka,	0.564	
Lambuya, Wangi Wangi, and	0.504	
Raha grids	0.515	
Ampana, Balantak, Bualemo,	0.515	
Bulungkobit, Bunta, Lelang,		
Lipulalong, Lumbi-lumbia,		
Luwuk, Palapas-Palu, Salakan,		
Toili, Toli-Toli, and Wakai grids		
Lombok, Bima, and Sumbawa	0.568	
grids		
Adonara, Alor, Ende, Maumere,	0.537	
Rote, Timor, and Waingapu grids		
Ambon, Buano, Bula, Dobo,	0.557	
Geser, Haruku, Kairatu, Kesui,	0.007	
Kian Darat, Kisar, Kobisonta,		
Laimu, Larat, Liran, Mako, Moa,		
Ondor, Pasanea, Piru, Saumiaki,		
Serwaru, Taniwel, Tehoru, Tual,		
Wahai, Werinama, and Wetar		
grids		
Bere-Bere, Bicoli, Buli, Daruba,	0.532	
Ibu, Kedi, Lolobata, Maba,		
Ternate - Tidore, and Tobelo grids		
Biak, Genyem, Jayapura,	0.491	
Merauke, Nabire, Serui, and		
Timika grids		
Manokwari and Sorong grids	0.518	
Bantal, Ipuh, Kota Bani, and	0.532	
Mukomuko grids	0.002	
Mukoliluko gilus		
In case a biomass power plant in a pro	posed project	
activity is connected to an internal grid		
activity is connected to an internal grid		

both a national/regional grid, and		
and/or a captive power generator (Case 2), <i>EF_{RE,grid}</i> is	
set as follows:		
National/regional grid name	Emission factor	
	(tCO ₂ /MWh)	
Jamali, 3 Nusa, and Karimun	0.533	
Jawa grids		
Sumatra grid	0.458	
Nilas and Plau Tello grids	0.533	
Siberut, Siberut Utara, Sipora,	0.529	
and Pagai Selatan grids	0.400	
Alai, Batam, Batam-Tanjung	0.499	
Pinang, Durai, Kelong, Ladan,		
letung, Midai, Moro, Penuba, Ranai, Sedanau, Serasan,		
Ranai, Sedanau, Serasan, Tambelan, Tanjung Balai		
Karimun, Tanjung Batu, and		
Tarempa grids		
Bengkalis, Benteng, Concong	0.533	
Luar, Kota Lama, Lemang,	0.000	
Selat Panjang, Sungai		
Guntung, Tanjung Samak,		
Teluk Dalam, Teluk Ketapang,		
and Masohi grids		
Bangka and Belitung grids	0.533	
Barito grid	0.533	
Khatulistiwa grid	0.533	
Mahakam and Tarakan grids	0.533	
Sulutgo grid	0.274	
Sulselbar grid	0.243	
Kendari, Bau Bau, Kolaka,	0.533	
Lambuya, Wangi Wangi, and Raha grids		
Raha grids Ampana, Balantak, Bualemo,	0.515	
Bulungkobit, Bunta, Lelang,	0.315	
Lipulalong, Lumbi-lumbia,		
Luwuk, Palapas-Palu,		
Salakan, Toili, Toli-Toli, and		
Wakai grids		
Lombok, Bima, and Sumbawa	0.533	
grids		
Adonara, Alor, Ende,	0.533	
Maumere, Rote, Timor, and		
Waingapu grids		
Ambon, Buano, Bula, Dobo,	0.533	
Geser, Haruku, Kairatu, Kesui,		
Kian Darat, Kisar, Kobisonta,		
Laimu, Larat, Liran, Mako,		
Moa, Ondor, Pasanea, Piru,		
Saumiaki, Serwaru, Taniwel,		
Tehoru, Tual, Wahai, Waringma and Water gride		
Werinama, and Wetar grids		

		20	
	Bere-Bere, Bicoli, Buli, 0.5 Daruba, Ibu, Kedi, Lolobata, Maba, Ternate - Tidore, and Tobelo grids	32	
	Biak, Genyem, Jayapura, 0.4 Merauke, Nabire, Serui, and Timika grids	91	
	Manokwari and Sorong grids0.5Bantal, Ipuh, Kota Bani, and0.5Mukomuko grids0.5		
	In case a biomass power plant in a proposed proje	ct	
	activity is connected to an internal grid which is n	ot	
	connected to a national/regional grid, and only		
	connected to an isolated grid and/or a captive pow	/er	
	generator (Case 3), $EF_{RE,cap}$: 0.533 tCO ₂ /MWh is		
	applied.		
NCV_i	Net calorific value of fossil fuel <i>i</i> used for operating	ng Iı	n the order of
	a biomass power plant [GJ/mass or volume]	р	reference:
		a) Values provided by
			the fuel supplier;
		b) Measurement by the
			project participants;
		c) Regional or national
			default values;
NCV_j	Net calorific value of fossil fuel <i>j</i> used for	d) IPCC default values
	transportation activity of solid biomass fuels to a		provided in 2006
	biomass power plant [GJ/mass or volume]		IPCC Guidelines on
			National GHG
			Inventories. Upper
			value is applied.

EF _{fuel,i}	CO ₂ emission fac	ctor of fossil fuel <i>i</i> used for	In the order of
L1 juei,i	operating a biom	preference:	
	operating a bronn	a) Values provided by	
		the fuel supplier;	
		b) Measurement by the	
		project participants;	
			c) Regional or national
			default values;
EF _{fuel,j}	CO ₂ emission fac	tor of fossil fuel <i>j</i> used for	d) IPCC default values
	transportation act	tivity of solid biomass fuels to a	provided in 2006
	biomass power p	IPCC Guidelines on	
		National GHG	
			Inventories. Upper
		value is applied.	
$EF_{vehicle,l}$	CO_2 emission factor of vehicle type <i>l</i> [tCO ₂ /ton-km]		The default values
			provided in the CDM
	Vehicle class	EF vehicle, l	methodological tool
	Light vehicle	0.000245 tCO ₂ /ton-km	"Project and leakage
	Heavy vehicle	0.000129 tCO ₂ /ton-km	emissions from
			transportation of
	Vehicles with a g	freight."	
	equal to 26 tonne		
	Vehicles with a g		
	26 tonnes are clas		