Additional information on calculating the emission factors of Indonesian electricity grids for the JCM project development

In order to secure net emission reductions in the methodology, the following emission factors will be applied depending on the regional grid to which a proposed project activity will connect in Indonesia:

- Table 1 summarizes the emission factors to be applied for renewable energy system(s) in a proposed project activity which is directly connected, or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid (Case 1).
- Table 1 also summarizes the emission factors to be applied for renewable energy system(s) in a proposed project activity which is connected to an internal grid connecting to both a national/regional grid and an isolated grid and/or a captive power generator (Case 2).

	Emission factor	Emission factor
National/regional grid name	for Case 1	for Case 2
	(tCO2/MWh)	(tCO2/MWh)
Jamali, 3 Nusa, Karimun Jawa	0.619	0.533
Sumatra	0.458	0.458
Nias, Pulau Tello	0.533	0.533
Siberut, Siberut Utara, Sipora, Pagai Selatan	0.529	0.529
Alai, Batam, Batam-Tanjung Pinang, Durai, Kelong,	0.499	0.499
Ladan, letung, Midai, Moro, Penuba, Ranai, Sedanau,		
Serasan, Tambelan, Tanjung Balai Karimun, Tanjung		
Batu, Tarempa		
Bengkalis, Benteng, Concong Luar, Kota Lama, Lemang,	0.545	0.533
Selat Panjang, Sungai Guntung, Tanjung Samak, Teluk		
Dalam, Teluk Ketapang, Masohi		
Bangka, Belitung	0.628	0.533
Barito	0.653	0.533
Khatulistiwa	0.549	0.533
Mahakam and Tarakan	0.534	0.533
Sulutgo	0.274	0.274
Sulselbar	0.243	0.243
Kendari, Bau Bau, Kolaka, Lambuya, Wangi Wangi, Raha	0.564	0.533

Table 1 Grid emission factor Case 1 and Case 2

Ampana, Balantak, Bualemo, Bulungkobit, Bunta, Lelang,	0.515	0.515
Lipulalong, Lumbi-lumbia, Luwuk, Palapas-Palu,		
Salakan, Toili, Toli-Toli, Wakai		
Lombok, Bima, Sumbawa	0.568	0.533
Adonara, Alor, Ende, Maumere, Rote, Timor, Waingapu	0.537	0.533
Ambon, Buano, Bula, Dobo, Geser, Haruku, Kairatu,	0.557	0.533
Kesui, Kian Darat, Kisar, Kobisonta, Laimu, Larat, Liran,		
Mako, Moa, Ondor, Pasanea, Piru, Saumiaki, Serwaru,		
Taniwel, Tehoru, Tual, Wahai, Werinama, Wetar		
Bere-Bere, Bicoli, Buli, Daruba, Ibu, Kedi, Lolobata,	0.532	0.532
Maba, Ternate - Tidore, Tobelo		
Biak, Genyem, Jayapura, Merauke, Nabire, Serui, Timika	0.491	0.491
Manokwari, Sorong	0.518	0.518
Bantal, Ipuh, Kota Bani, Mukomuko	0.532	0.532

• An emission factor of **0.533 tCO2/MWh** is applied, for renewable energy system (s) in a proposed project activity which is connected to an internal grid only connecting to an isolated grid and/or a captive power generator (Case 3).

Background information and emission factors calculation methods

1. Current status of electric power source mix in Indonesia

There are five major islands in Indonesia: Sumatra, Java, Kalimantan, Sulawesi, and Papua, and 134 electricity interconnection systems or grids which cover 34 provinces as shown in Table 2.

Interconnection System/grids	Provinces/area covered	
1 7 1	East Java, Central Java, D.I. Yogyakarta, West	
1. Jamali	Java, Banten, D.K.I. Jakarta, Bali	
2. 3 Nusa	Bali	
3. Karimun Jawa	Central Java	
4 Sumstan	Aceh, North Sumatra, West Sumatra, Riau,	
4. Sumara	South Sumatra, Jambi, Bengkulu, Lampung	
5. Nias	North Sumetra	
6. Pulau Tello	Norm Sumara	
7. Siberut		
8. Siberut Utara	Wast Sumates	
9. Sipora	west Sumarra	
10. Pagai Selatan		
11. Alai		
12. Batam		
13. Batam-Tanjung Pinang		
14. Dabo Singkep		
15. Durai		
16. Kelong		
17. Ladan		
18. Letung	Kepri	
19. Midai		
20. Moro		
21. Penuba		
22. Ranai		
23. Sedanau		
24. Serasan		
25. Tambelan		

 Table 2 Interconnection systems and provinces covered

26. Tanjung Balai Karimun		
27. Tanjung Batu		
28. Tarempa		
29. Bengkalis		
30. Benteng		
31. Concong Luar		
32. Kota Lama		
33. Lemang		
34. Pulau Halang		
35. Selat Panjang	Riau	
36. Sungai Guntung		
37. Tanjung Samak		
38. Teluk Dalam		
39. Teluk Ketapang		
40. Tembilahan		
41. Masohi*		
42. Bangka	Denella Dell'Anne	
43. Belitung	Bangka Belitung	
44. Barito	Kalselteng (South and Central Kalimantan)**	
45. Khatulistiwa	West Kalimantan	
46. Mahakam	East Kalimantan	
47. Tarakan	North Kalimantan	
48. Sulselbar	South and West Sulawesi	
49. Sulutgo	North Sulawesi and Gorontalo	
50. Bau Bau		
51. Kendari		
52. Kolaka	Southoost Sulawasi	
53. Lambuya	Southeast Sulawesi	
54. Raha		
55. Wangi Wangi		
56. Ampana		
57. Balantak		
58. Bualemo	Central Sulawesi	
59. Bulungkobit		
60. Bunta		

61. Kotaraya	
62. Lelang	
63. Lipulalongo	
64. Lumbi-lumbia	
65. Luwuk	
66. Palapas-Palu	
67. Paposta	
68. Salakan	
69. Toili	
70. Toli-Toli	
71. Wakai	
72. Lombok	
73. Bima	West Nusa Tenggara
74. Sumbawa	
75. Adonara	
76. Alor	
77. Ende	
78. Maumere	East Nusa Tenggara
79. Rote	
80. Timor	
81. Waingapu	
82. Ambon	
83. Buano	
84. Bula	
85. Dobo	
86. Geser	
87. Haruku	
88. Kairatu	Malalar
89. Kesui	манки
90. Kian Darat	
91. Kisar	
92. Kobisonta	
93. Laimu	
94. Larat	
95. Liran	

96. Mako	
97. Moa	
98. Namlea	
99. Ondor	
100. Pasanea	
101. Piru	
102. Pulau Buru	
103. Saumiaki	
104. Serwaru	
105. Taniwel	
106. Tehoru	
107. Tual	
108. Wahai	
109. Werinama	
110. Wetar	
111. Bere-Bere	
112. Bicoli	
113. Buli	
114. Daruba	
115. Ibu	
116. Jailolo	North Maluku
117. Kedi	
118. Lolobata	
119. Maba	
120. Tenate - Tidore	
121. Tobelo	
122. Biak	
123. Genyem	
124. Jayapura	
125. Merauke	Papua
126. Nabire	
127. Serui	
128. Timika	
129. Manokwari	West Papus
130. Sorong	west rapua

131. Bantal	
132. Ipuh	Denslowla
133. Kota Bani	Bengkulu
134. Mukomuko	

* Masohi is in Riau and Maluku, but it is included in Riau, which has more conservative emission factor than Maluku.

** Kalselteng is considered as South and Central Kalimantan.

(Data source: Directorate General of Electricity, Ministry of Energy and Mineral Resources, Indonesia, 2020)

There are six types of primary energy used for electricity generation in Indonesia, namely, coal, oil and diesel, natural gas, hydro, geothermal, and solar power¹. The share of electricity generated from 2016 to 2018 by each type of primary energy is shown in Table 3. The electricity generation from hydro, geothermal, and solar power plants are deemed as low cost/must run (LCMR) power sources.

Electricity generation by primary energy type,	2016	2017	2018
PLN only (TWh)			
Coal	91.70	105.78	114.40
Oil (HSD, IDO, MFO) and diesel	17.31	56.83	56.09
Natural gas	56.95	2.29	3.47
Hydro	13.89	12.43	10.73
Geothermal	3.96	4.10	4.01
Solar power	0.01	0.01	0.00
Total	183.81	181.42	188.70

Table 3 Electricity generation by primary energy type²

*There is a difference between the values listed as "Total" and the summation of each value of "Coal", "Oil (HSD, IDO, MFO) and diesel", "Natural gas", "Hydro", "Geothermal" and "Solar power" because these values are rounded.

**Electricity generation represents a net amount which is the amount of electricity generated by a power plant that is transmitted and distributed for consumer use.

When the share of LCMR is less than 50% of the total grid generation, the operation of LCMR

¹ Directorate General of Electricity, Ministry of Energy and Mineral Resources Indonesia (2015) The Book of

Electricity Statistics Number 28-2015.

² Directorate General of Electricity, Ministry of Energy and Mineral Resources Indonesia (2019) The Book of Electricity Statistics Number 32-2019.

resources would not be affected by a newly installed power plant including a hydro power project³. Therefore, only electricity from gas-fired, coal-fired, oil and diesel-fired power plants are taken into account for calculating the official regional grid emission factor in Indonesia. Based on this assumption, the Government of Indonesia published emissions factor of each regional grid (Appendix 2).

2. Calculation of emission factors of the national/regional grids

In order to identify the emission factors of the Indonesian regional electricity systems which can secure net emission reductions, the emission factors in this methodology are established by an operating margin that is calculated using emission factors of power plants including LCMR resources. In calculating the emission factors of each fossil fuel power generation, the best heat efficiencies among currently operational plants in Indonesia are applied.

The most efficient coal-fired power plants and gas-fired power plants currently operational in Indonesia are identified in Table 4 and the best heat efficiencies are determined as **42% and 62%**, respectively. With regard to diesel-fired power plants, the heat efficiency of **49%**, an efficiency level which has not been achieved yet by the world's leading diesel generator, is applied due to the data limitation⁴.

Type of power plant	Power plant	Product	Capacity	Plant efficiency
				(LHV)
Coal-fired Ultra-	Lontar Coal-Fired	GT13E2	315MW	42%
Super Critical	Thermal Power			
(USC) ⁵	Plant, Banten			
Gas Turbine	Muara Karang	Mitsubishi	566 MW	62%
Combined Cycle Combined Cycle		Hitachi Power		
(GTCC) Power Plant, Jakarta		Systems		
		M701F4 ⁶		

Table 4 Best efficiency of fossil fuel power plants in Indonesia

 $^{^3}$ CDM EB (2015) Tool to calculate the emission factor for an electricity system.

⁴ The approved JCM methodologies (e.g. BD_AM002, CR_AM001, KE_AM002, KH_AM002, MN_AM003,

PW_AM001 and MV_AM001, VN_AM007) also applied this value.

⁵ <u>https://www.toshiba.co.jp/tech/review/2008/09/63_09pdf/a03.pdf</u>

⁶ <u>https://www.mhps.com/jp/products/gasturbines/lineup/m701f/</u>

The emission factor of power generation by each fuel source is calculated from the plant efficiency using the following equation:

Emission factor of fossil fuel power plant [tCO2/MWh]

= (Emission factor of fuel source [kgCO₂/TJ]*10⁻³*0.0036[TJ/MWh] / (Plant heat efficiency (LHV) [%]/100)

Applying the emission factors of coal, gas and diesel combustion, which are 92,800 kgCO₂/TJ, 54,300 kgCO₂/TJ and 72,600 kgCO₂/TJ, respectively, derived from "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 2, stationary combustion", together with the plant efficiency (LHV) of 42% for the coal-fired power plant, 62% for the gas-fired power plant and 49% for diesel-fired power plant, and using conversion factors (10⁻³ for conversion from kgCO₂ to tCO₂ and 0.0036 for conversion from TJ to MWh), the conservative emission factors are calculated at **0.795 tCO₂/MWh** for coal-fired power plants, **0.315 tCO₂/MWh** for gas-fired power plants and **0.533 tCO₂/MWh** for diesel-fired power plants.

Using the data of electricity generation including LCMR resources (Appendix 1) and the conservative emission factors of each power source, operating margins of each national/regional grid are obtained, as follows:

$$EF_{RE,j} = \frac{\sum_{i} EG_{i,j} \times EF_{i}}{\sum_{i} EG_{i,j}}$$

Where:

 $EF_{RE,j}$ = The reference emission factor of regional grid *j* [tCO₂/MWh]

 EF_i = Conservative emission factor of power plant type *i* [tCO₂/MWh]

 $EG_{i,j}$ = Electricity generated and delivered to the regional grid from power plant type *i* including LCMR resources in grid *j* during 2016-2018 [MWh]

As a result, the emission factor of each national/regional grid is calculated and shown in column "Emission factor for Case1 (tCO₂/MWh)" of Table 1, to be applied for renewable energy system(s) in a proposed project activity which is directly connected, or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid. For most national/regional grids, those values are lower than the 2017 emission factors of the respective national/regional grids published by the Government of Indonesia (Appendix 2). Therefore, net emission reductions will be ensured by applying the emission factors determined above. For some national/regional girds (Dabo Singkep, Pulau Halang, Tembilahan, Kotaraya, Paposta, Namlea, Pulau

Buru, Jailolo), the values obtained as a result of calculation are higher than the 2017 emission factors of the respective national/regional grids published by the Government of Indonesia (Appendix 2). In order to secure net emission reductions, those national/regional grids are excluded from "Table 1 Grid emission factor Case 1 and Case 2", and this additional information is not applicable for those grids.

3. Calculation of the emission factor of a captive power generator

To determine the emission factor of a captive power generator, which normally uses a diesel generator, in a conservative and simple manner, the heat efficiency of 49%, an efficiency level which has not been achieved yet by the world's leading diesel generator, is applied.

The emission factor of diesel power generation is calculated from the heat efficiency using the following equation:

Emission factor of diesel power plant [tCO2/MWh]

= (CO₂ emission factor of diesel oil [kgCO₂/TJ]*10⁻³*0.0036[TJ/MWh] / (Plant heat efficiency (LHV) [%]/100)

Applying the default value of the emission factor of diesel combustion which is 72,600 kgCO₂/TJ derived from "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 2, stationary combustion", together with the heat efficiency of 49%, the emission factor of an isolated grid and/or captive power generator is calculated at **0.533 tCO₂/MWh**.

4. Selection of the calculated emission factors

In case the renewable energy system(s) in a proposed project activity is directly connected, or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid (Case 1), the value of operating margin including LCMR resources, using the best heat efficiency among currently operational plants in Indonesia in calculating emission factors of fossil fuel power plants, are applied. The emission factors to be applied are shown in column "Emission factor for Case 1 (tCO₂/MWh)" of Table 1.

In case that the renewable energy system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional grid and an isolated grid and/or a captive power generator (Case 2), the lower values between "Emission factor for Case 1 (tCO₂/MWh)" of Table 1 and the conservative emission factor of diesel-fired power plant of 0.533 tCO₂/MWh are applied. The emission factors to be applied are shown in column "Emission factor for Case 2 (tCO₂/MWh)" of Table 1.

In case that the renewable energy system(s) in a proposed project activity is only connected to an internal grid connecting to an isolated grid and/or a captive power generator (Case 3), the emission factor of 0.533 tCO₂/MWh is applied.

Appendix I Electric power source mix of each regional grid

Electricity generation in Sumatra grid, by type of fuel used (TWh)

■ Coal ■ Oil and diesel ■ Natural gas ■ Hydro ■ Geothermal

Share of electricity generation during 2016-2018 in Jamali grid

Electricity generation in Pagai Selatan, Siberut, Siberut Utara, and Sipora grids, by type of fuel used (TWh)

Electricity generation in Alai, Batam-Tanjung Pinang, Durai, Kelong, Ladan, letung, Midai, Moro, Penuba, Ranai, Sedanau, Serasan, Tambelan, Tanjung Balai Karimun, Tanjung Batu, and Tarempa grids, by type of fuel used (TWh)

Electricity generation in Bengkalis, Benteng, Concong Luar, Kota Lama, Lemang, Selat Panjang, Sungai Guntung, Tanjung Samak, Teluk Dalam, Teluk Ketapang, and Masohi grids, by type of fuel used (TWh)

Share of electricity generation during 2016-2018 in Pagai Selatan, Siberut, Siberut Utara, and Sipora

Share of electricity generation during 2016-2018 in Alai, Batam, Batam-Tanjung Pinang, Durai, Kelong, Ladan, letung, Midai, Moro, Penuba, Ranai, Sedanau, Serasan, Tambelan, Tanjung Balai Karimun, Tanjung Batu, and Tarempa grids

Share of electricity generation during 2016-2018 in Bengkalis, Benteng, Concong Luar, Kota Lama, Lemang, Selat Panjang, Sungai Guntung, Tanjung Samak, Teluk Dalam, Teluk Ketapang, and Masohi grids

Share of electricity generation during 2016-2018 in Bangka and Belitung grids

Share of electricity generation during 2016-2018 in Barito grid

Share of electricity generation during 2016-2018 in Khatulistiwa grid

Electricity generation in Sulselbar grid, by type of fuel used (TWh)

Share of electricity generation during 2016-2018 in Mahakam and Tarakan grids

Share of electricity generation during 2016-2018 in Sumatera grid

Share of electricity generation during 2016-2018 in Sulselbar grid

Electricity generation in Ampana, Balantak, Bualemo, Bulungkobit, Bunta, Kotaraya, Lelang, Lipulalongo, Lumbilumbia, Luwuk, Palapas-Palu, Paposta, Salakan, Toili, Toli-Toli, and Wakai grids, by type of fuel used (TWh)

Electricity generation in Lombok, Bima, and Sumbawa grids, by type of fuel used (TWh)

Share of electricity generation during 2016-2018 in Ampana, Balantak, Bualemo, Bulungkobit, Bunta, Kotaraya, Lelang, Lipulalongo, Lumbi-lumbia, Luwuk, Palapas-Palu, Paposta, Salakan, Toili, Toli-Toli, and

Share of electricity generation during 2016-2018 in Lombok, Bima, and Sumbawa grids

Electricity generation in Ambon, Buano, Bula, Dobo, Geser, Haruku, Kairatu, Kesui, Kian Darat, Kisar, Kobisonta, Laimu, Larat, Liran, Mako, Moa, Ondor, Pasanea, Piru, Saumiaki, Serwaru, Taniwel, Tehoru, Tual, Wahai, Werinama, and Wetar grids, by type of f

Electricity generation in Bere-Bere, Bicoli, Buli, Daruba, Ibu, Kedi, Lolobata, Maba, Ternate - Tidore, and Tobelo grids, by type of fuel used (TWh)

Share of electricity generation during 2016-2018 in Ambon, Buano, Bula, Dobo, Geser, Haruku, Kairatu, Kesui, Kian Darat, Kisar, Kobisonta, Laimu, Larat, Liran, Mako, Moa, Ondor, Pasanea, Piru, Saumiaki, Serwaru, Taniwel, Tehoru, Tual, Wahai, Werinama, and

Share of electricity generation during 2016-2018 in Bere-Bere, Bicoli, Buli, Daruba, Ibu, Kedi, Lolobata, Maba, Ternate - Tidore, and Tobelo grids

Electricity generation in Manokwari and Sorong grids, by type of fuel used (TWh)

Share of electricity generation during 2016-2018 in Manokwari and Sorong

Share of electricity generation during 2016-2018 in Bantal, Ipuh, Kota Bani, and Mukomuko grids

(Data source: Directorate General of Electricity, Ministry of Energy and Mineral Resources, 2019)

No.	Interconnection of	Emission Factor	No.	Interconnection of	Emission
	Electric Power Systems	(tCO2/MWh)		Electric Power	Factor
				Systems	(tCO2/MWh)
1	3 Nusa	N/A	26	Bunta	0,72
2	Adonara	N/A	27	Concong Luar	0,64
				(Riau)	
3	Alai (Kepri)	0,53	28	Dabo Singkep	0,07
				(Kepri)	
4	Alor	0,78	29	Daruba (Morotai)	0,82
5	Ambon	0,66	30	Dobo	0,72
6	Ampana	N/A	31	Durai	0,53
7	Balantak	0,77	32	Ende	2,02
8	Bangka	1,27	33	Genyem	0,82
9	Bantal	N/A	34	Geser	0,78
10	Barito	0,95	35	Haruku	N/A
11	Batam	0,62	36	Ibu	0,76
12	Batam-Tanjung Pinang	1,13	37	Ipuh	0,74
13	Bau-Bau	0,71	38	Jailolo	0,43
14	Belitung	1,77	39	Jamali	0.89
15	Bengkalis (Riau)	0,70	40	Jayapura	0,73
16	Benteng (Riau)	N/A	41	Kairatu	N/A
17	Bere-Bere (Morotai)	N/A	42	Karimun Jawa	N/A
18	Biak	0,70	43	Kedi	0,87
19	Bicoli (Halmahera	N/A	44	Kelong	0,61
	Timur)				
20	Bima	0,86	45	Kendari	1,67
21	Bualemo	0,67	46	Kesui	1,01
22	Buano (Seram Barat)	0,76	47	Khatulistiwa	0,90
23	Bula (Seram Timur)	N/A	48	Kian Darat	0,69
24	Buli (Halmahera	0,78	49	Kisar	0,98
	Timur)				
25	Bulungkobit	0,84	50	Kobisonta	0,79

Appendix 2 Emission factors of grids published by the Government of Indonesia (2017)

No.	Interconnection of	Emission Factor	No.	Interconnection of	Emission
	Electric Power Systems	(tCO2/MWh)		Electric Power	Factor
				Systems	(tCO2/MWh)
51	Kolaka	0,73	78	Mukomuko	N/A
52	Kota Bani	0,74	79	Nabire	0,70
53	Kota Lama	0,57	80	Namlea	0,49
54	Kotaraya	0,51	81	Nias	0,77
55	Ladan	0,77	82	Ondor (Seram	0,79
				Utara)	
56	Laimu	0,82	83	Pagai Selatan	0,86
57	Lambuya	N/A	84	Palapas-Palu	0,55
58	Larat	0,76	85	Paposta	0,38
59	Lelang	0,57	86	Pasanea (Seram	N/A
				Utara Barat)	
60	Lemang (Riau)	0,78	87	Penuba (Kepri)	N/A
61	Letung	0,81	88	Piru (Seram Barat)	N/A
62	Lipulalongo	0,86	89	Pulau Buru	0,39
63	Liran	N/A	90	Pulau Halang (Riau)	0,51
64	Lolobata (Halmahera	N/A	91	Pulau Tello	0,62
	TImur)				
65	Lombok	0,66	92	Raha	0,77
66	Lumbi-lumbia	0,82	93	Ranai	0,70
67	Luwuk	0,58	94	Rote	0,80
68	Maba (Halmahera	0,81	95	Salakan	N/A
	Timur)				
69	Mahakam	1,08	96	Saumlaki	0,71
70	Mako (Buru)	N/A	97	Sedanau	0,80
71	Manokwari	0,70	98	Selat Panjang (Riau)	0,68
72	Masohi (Maluku	N/A	99	Serasan	0,76
	Tengah)				
73	Maumere	0,72	100	Serui	0,73
74	Merauke	0,71	101	Serwaru	1,01
75	Midai	0,79	102	Siberut	0,94
76	Moa	0,83	103	Siberut Utara	0,96
77	Moro (Kepri)	0,52	104	Sipora	0,86

No.	Interconnection of	Emission Factor
	Electric Power Systems	(tCO2/MWh)
105	Sorong	0,69
106	Sulselbar	0.87
107	Sulutgo	1.49
108	Sumatera	0.89
109	Sumbawa	0,69
110	Sungai Guntung (Riau)	0,59
111	Tambelan (Kepri)	N/A
112	Taniwel (Seram Barat)	0,66
113	Tanjung Balai Karimun	1,13
114	Tanjung Batu	0,55
115	Tanjung Samak (Riau)	0,76
116	Tarakan	0,69
117	Tarempa	0,77
118	Tehoru (Seram Selatan)	0,79
119	Teluk Dalam (Riau)	N/A
120	Teluk Ketapang (Riau)	0,67
121	Tembilahan (Riau)	0,52
122	Ternate - Tidore	1,24
123	Timika	0,69
124	Timor	0,68
125	Tobelo	0,63
126	Toili	0,60
127	Toli-Toli	0,76
128	Tual	0,58
129	Wahai (Seram Utara)	0,81
130	Waingapu	0,70
131	Wakai	0,70
132	Wangi-Wangi	0,86
133	Werinama (Seram	0,83
	Timur)	
134	Wetar	N/A

(Data source: Directorate General of Electricity, Ministry of Energy and Mineral Resources, Indonesia, 2020)