JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia	
Name of the methodology proponents	Tokyo Century Corporation	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of all-electric injection molding	
version number	machine with power regeneration, Version 1.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
Date of completion	26/08/2020	

History of the proposed methodology

Version	Date	Contents revised	
1.0	26/08/2020	First edition	

A. Title of the methodology

Installation of all-electric injection molding machine with power regeneration, Version 1.0

B. Terms and definitions

Terms	Definitions	
Injection molding machine	Injection molding machine which consists of injection	
	unit, plasticizing unit, clamping unit, and ejection unit and	
	is used for manufacturing plastic products.	
All-electric injection molding	Injection molding machine which is operated by electric	
machine	press. All of 4 servo-motors for injection unit, plasticizing	
	unit, clamping unit, and ejection unit are directly	
	electrically driven. All-electric injection molding machine	
	is designed by opened control system.	
Hydraulic injection molding	Injection molding machine which is operated with	
machine	hydraulic press by the oil pumps. Hydraulic injection	
	molding machine is designed by closed control system.	
Power regeneration	An electric power that makes it possible to regenerate	
	electric power efficiently by kinetic energy at deceleration	
	of motors.	

C. Summary of the methodology

Items			Summary			
GHG	emission	reduction	Installation of all-electric injection molding machine with a			
measure	es		function of power regeneration leads to reducing electricity			
			consumption by the oil pumps which are used for reference			
			injection molding machine (hydraulic injection molding			
			machine), and consequently GHG emissions.			
Calcula	tion of	reference	Reference emissions are calculated with the electricity			
emission	ns		consumption of all-electric injection molding machine,			
			reduction ratio of electricity consumption and CO2 emission			
			factor for consumed electricity.			

Calculation	of	project	Project	emissions	are	calculated	with	the	electricity
emissions			consumption of all-electric injection molding machine and CO ₂						
			emission factor for consumed electricity.						
Monitoring parameters			Electricity consumption of the project injection molding						
		machine							

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	All-electric injection molding machine with a function of power regeneration			
	is installed.			

E. Emission Sources and GHG types

Reference emissions				
Emission sources	GHG types			
Electricity consumption by hydraulic injection molding machine	CO ₂			
Project emissions				
Emission sources	GHG types			
Electricity consumption by all-electric injection molding machine	CO ₂			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reduction ratio of specific electricity consumption of the project injection molding machine to the reference injection molding machine (RR) is provided as a default value in this methodology and is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

Specific electricity consumption (SEC) is an electricity consumption of injection molding machine to manufacture one unit of plastic product. SEC can be estimated from design specification of injection molding machine.

1. The hydraulic injection molding machine is currently available and commonly used in the Indonesian market. Therefore, it is determined as a reference injection molding machine.

- 2. SEC data of all-electric injection molding machine (SEC_{PJ}) and hydraulic injection molding machine (SEC_{RE}) to manufacture several types of plastic products have been collected from the manufacturer of injection molding machine.
- 3. Values of RR are derived as a ratio of SEC_{PJ} to SEC_{RE} to manufacture the same type of plastic product. The maximum RR value amongst the RR values derived as above is selected and set as a default RR value in a conservative manner to ensure net emission reductions, which is described in Section I of this methodology.

F.2. Calculation of reference emissions

$$RE_p = \sum_{i} \left(EC_{PJ,i,p} \times \frac{1}{RR} \times EF_{elec} \right)$$

Where:

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Electricity consumption of the project injection molding machine i during

the period p [MWh/p]

RR : Reduction ratio of specific electricity consumption of the project injection

molding machine to the reference injection molding machine [-]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of the project injection molding machine

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

Where:

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Electricity consumption of the project injection molding machine i during the

period *p* [MWh/p]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of the project injection molding machine

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

Where:

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source		
RR	Reduction ratio of specific electricity	Data collected from the		
	consumption of the project injection molding	manufacturer of injection		
	machine to the reference injection molding	molding machine.		
	machine [-]			
		The default value should be		
	The default value of RR is set at the maximum	revised if necessary.		
	value in a conservative manner, as follows;			
	RR=0.532			
EF_{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]		
	When the project electricity consumes only	The data is sourced from		
	grid electricity or captive electricity, the project	"Emission Factors of		
	participant applies the CO ₂ emission factor	Electricity Interconnection		
	respectively.	Systems", National		
	When the project molding machine may	Committee on Clean		
	consume both grid electricity and captive	Development Mechanism		
	electricity, the project participant applies the	(Indonesian DNA for CDM),		
	CO ₂ emission factors with lower value.	based on data obtained by		
		Directorate General of		
	[CO ₂ emission factor]	Electricity, Ministry of		

For grid electricity: The most recent value available from the source stated in this table at the time of validation

For captive electricity: 0.8* [tCO₂/MWh]

*The most recent value available from CDM approved small scale methodology AMS-I.A at the time of validation is applied.

Energy and Mineral Resources, Indonesia, unless otherwise instructed by the Joint Committee.

[Captive electricity]

CDM approved small scale methodology: AMS-I.A