Joint Crediting Mechanism Approved Methodology ID_AM025 "Installation of all-electric injection molding machine with power regeneration"

A. Title of the methodology

Installation of all-electric injection molding machine with power regeneration, Version 1.0

B. Terms and definitions

Terms	Definitions	
Injection molding machine	Injection molding machine which consists of injection unit,	
	plasticizing unit, clamping unit and ejection unit, and is	
	used for manufacturing plastic products.	
All-electric injection molding	Injection molding machine which is operated by electric	
machine	press. All of 4 servo-motors for injection unit, plasticizing	
	unit, clamping unit, and ejection unit are directly	
	electrically driven. All-electric injection molding machine	
	is designed by opened control system.	
Hydraulic injection molding	Injection molding machine which is operated with	
machine	hydraulic press by the oil pumps. Hydraulic injection	
	molding machine is designed by closed control system.	
Power regeneration	To regenerate electric power efficiently by kinetic energy at	
	deceleration of motors.	

C. Summary of the methodology

	Items Summary		Summary	
GHG	emission	reduction	Installation of all-electric injection molding machine with a	
measur	res		function of power regeneration leads to reducing electricity	
			consumption by the oil pumps which are used for reference	
			injection molding machine (hydraulic injection molding	
			machine), and consequently GHG emissions.	
Calcul	ation of	reference	Reference emissions are calculated with the electricity	
emissic	ons		consumption of all-electric injection molding machine,	

	reduction ratio of electricity consumption and CO ₂ emission		
	factor for consumed electricity.		
Calculation of project	Project emissions are calculated with the electricity		
emissions	consumption of all-electric injection molding machine and CO ₂		
	emission factor for consumed electricity.		
Monitoring parameters • Electricity consumption of the project injection mo			
	machine		

D. Eligibility criteria				
This methodolo	gy is applicable to projects that satisfy all of the following criteria.			
Criterion 1	All-electric injection molding machine with a function of power regeneration			
	is newly installed.			

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by hydraulic injection molding machine	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity consumption by all-electric injection molding machine	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reduction ratio of specific electricity consumption of the project injection molding machine to the reference injection molding machine (RR) is provided as a default value in this methodology and is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

Specific electricity consumption (SEC) is an electricity consumption of injection molding machine to manufacture one unit of plastic product. SEC can be estimated from design specification of injection molding machine.

- 1. The hydraulic injection molding machine is currently available and commonly used in the Indonesian market. Therefore, it is determined as a reference injection molding machine.
- 2. SEC data of all-electric injection molding machine (SEC_{PJ}) and hydraulic injection molding machine (SEC_{RE}) to manufacture several types of plastic products have been collected from the manufacturer of injection molding machine.
- 3. Values of RR are derived as a ratio of SEC_{PJ} to SEC_{RE} to manufacture the same type of plastic product. The maximum RR value amongst the RR values derived as above is selected and set as a default RR value in a conservative manner to ensure net emission reductions, which is described in Section I of this methodology.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \left(EC_{PJ,i,p} \times \frac{1}{RR} \times EF_{elec} \right)$$
Where:

$$RE_{p} \qquad : \text{Reference emissions during the period } p [\text{tCO}_{2}/\text{p}]$$

$$EC_{PJ,i,p} \qquad : \text{Electricity consumption of the project injection molding machine } i \text{ during the period } p [\text{MWh/p}]$$

$$RR \qquad : \text{Reduction ratio of specific electricity consumption of the project injection molding machine [-]}$$

$$EF_{elec} \qquad : \text{CO}_{2} \text{ emission factor for consumed electricity [tCO_{2}/MWh]}$$

$$i \qquad : \text{Identification number of the project injection molding machine}$$

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

Where:

PE_p	: Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Electricity consumption of the project injection molding machine <i>i</i> during the
	period p [MWh/p]
EF _{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where:	
ER_p	: Emission reductions during the period p [tCO ₂ /p]
RE_p	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
RR	Reduction ratio of specific electricity	Data collected from the
	consumption of the project injection molding	manufacturer of injection
	machine to the reference injection molding	molding machine.
	machine [-]	
		The default value should be
	The default value of RR is set at the maximum	revised if necessary.
	value in a conservative manner, as follows;	
	$\mathbf{RR}=0.532$	
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		The data is sourced from
	When the project electricity consumes only	"Emission Factors of
	grid electricity or captive electricity, the project	Electricity Interconnection
	participant applies the CO ₂ emission factor	Systems", National
	respectively.	Committee on Clean
		Development Mechanism
	When the project molding machine may	(Indonesian DNA for CDM),
	consume both grid electricity and captive	based on data obtained by
	electricity, the project participant applies the	Directorate General of
	CO ₂ emission factors with lower value.	Electricity, Ministry of

	Energy and Mineral
[CO ₂ emission factor]	Resources, Indonesia, unless
For grid electricity: The most recent value	otherwise instructed by the
available from the source stated in this table at	Joint Committee.
the time of validation	
	[Captive electricity]
For captive electricity, it is determined based on	For the option a)
the following options:	Specification of the captive
	power generation system
a) Calculated from its power generation	provided by the
efficiency (<u><i>q_{elec}</i> [%]</u>) obtained from	manufacturer (η_{elec} [%]).
manufacturer's specification	CO ₂ emission factor of the
The power generation efficiency based on	fossil fuel type used in the
lower heating value (LHV) of the captive	captive power generation
power generation system from the	system (EF _{fuel} [tCO ₂ /GJ])
manufacturer's specification is applied;	
$EE = 2.6 \times \frac{100}{5} \times EE$	For the option b)
$Er_{elec} = 5.6 \times \frac{\eta_{elec}}{\eta_{elec}} \times Er_{fuel}$	Generated and supplied
	electricity by the captive
b) Calculated from measured data	power generation system
The power generation efficiency calculated	$(EG_{PJ,p} [MWh/p]).$
from monitored data of the amount of fuel input	Fuel amount consumed by
for power generation $(FC_{PJ,p})$ and the amount	the captive power generation
of electricity generated $(EG_{PJ,p})$ during the	system $(FC_{PJ,p}$ [mass or
monitoring period p is applied. The	volume/p]).
measurement is conducted with the monitoring	Net calorific value (NCV _{fuel}
equipment to which calibration certificate is	[GJ/mass or volume]) and
issued by an entity accredited under	CO ₂ emission factor of the
national/international standards;	fuel $(EF_{fuel} [tCO_2/GJ])$ in
$EE = EC \times NCV \times EE \times \frac{1}{2}$	order of preference:
$EF_{elec} = FC_{PJ,p} \wedge NCV_{fuel} \wedge EF_{fuel} \wedge \overline{EG_{PJ,p}}$	1) values provided by the
Where:	fuel supplier;
<i>NCV_{fuel}</i> : Net calorific value of consumed fuel	2) measurement by the
[GJ/mass or volume]	project participants;
	3) regional or national
Note:	default values;
In case the captive electricity generation system	4) IPCC default values

r	neets all of the	following cond	itions, the value	provided in tables 1.2 and 1.4
i	in the following table may be applied to EF_{elec}			of Ch.1 Vol.2 of 2006 IPCC
ć	lepending on th	e consumed fue	el type.	Guidelines on National GHG
				Inventories. Lower value is
	• The system	n is non-renew	able generation	applied.
	system			
	• Electricity	generation ca	apacity of the	
	system is le	ess than or equa	ll to 15 MW	[Captive electricity with
				diesel fuel]
	Fuel type	Diesel fuel	Natural gas	CDM approved small scale
	EE	0.8	0.46	methodology: AMS-I.A.
	ΕΓ _{elec}	0.8 *1	0.40 *2	
				[Captive electricity with
*	1 The most	recent value	at the time of	natural gas
validation is applied.			2006 IPCC Guidelines on	
*2 The value is calculated with the equation in			National GHG Inventories	
the option a) above. The lower value of default			for the source of EF of	
effective CO ₂ emission factor for natural gas			natural gas.	
$(0.0543tCO_2/GJ)$, and the most efficient value			CDM Methodological tool	
C	of default efficiency for off-grid gas turbine			"Determining the baseline
S	systems (42%) are applied.			efficiency of thermal or
				electric energy generation
				systems version02.0" for the
				default efficiency for off-
				grid power plants.

History of the document

Version	Date	Contents revised
01.0	23 December 2020	Electronic decision by the Joint Committee
		Initial approval.