JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia		
Name of the methodology proponents	Environmental Management and Technology		
submitting this form	Center (EMATEC)		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Replacement of diffuser with aerator in aeration		
version number	pond, ver.1.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	01/04/2020		

History of the proposed methodology

Version	Date	Contents revised
1.0	01/04/2020	First edition

A. Title of the methodology

Replacement of diffuser with aerator in aeration pond, ver. 1.0

B. Terms and definitions

Terms	Definitions	
Diffuser	Aeration device in the shape of a disc, tube or plate, which is	
	used to supply air from blowers into wastewater for aerobic	
	wastewater treatment by producing fine bubbles in aeration	
	ponds for wastewater treatment.	
Aerator	Aeration device without power unit, which is used to supply	
	air from blowers into wastewater for aerobic wastewater	
	treatment by mixing air and wastewater in itself and	
	producing water circulation in the entire aeration ponds.	

C. Summary of the methodology

Items		Summary	
GHG emission	reduction	For aerobic wastewater treatment, aeration device(s) is(are) used	
measures		for supplying air into wastewater. Replacement of the diffuser	
		with the aerator enables to reduce air discharge pressure at	
		blower(s), to run blower(s) not continuously but intermittently	
		and to reduce discharge amounts of air from blower(s). By these	
		effects, electricity consumption at blower(s) can be reduced.	
Calculation of	reference	Reference emissions are calculated with electricity consumption	
emissions		of blower(s) connected with project aeration devices of aerator	
		(hereinafter referred to as "project blower(s)"), ratio of	
		operating time of blower(s) connected with reference aeration	
		devices of diffuser (hereinafter referred to as "reference	
		blower(s)") and project blower(s), ratio of shaft power of	
		reference/project blower(s), and CO ₂ emission factor for	
		consumed electricity.	
Calculation of	project	Project emissions are calculated with electricity consumption of	

emissions	project blower(s) and CO ₂ emission factor for consumed		
	electricity.		
Monitoring parameters	• Electricity consumption at project blower(s)		
	• Operating time of project blower(s)		
	• Stop time of project blower(s) during intermittent operation		
	• Discharge pressure of project blower(s)		
	· Rotations per minute of project blower(s)		

D. Eligibility criteria			
This methodology is applicable to projects that satisfy all of the following criteria.			
Criterion 1	Aerator(s) is(are) installed to replace existing diffuser(s) in existing aeration		
	pond(s) for wastewater treatment.		
Criterion 2	Effluent wastewater quality meets the wastewater quality standards on items		
	such as biochemical oxygen demand (BOD), chemical oxygen demand (COD)		
	and total suspended solids (TSS) which are applicable to the project site.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Electricity consumption by blower(s) which supply air to diffuser(s)	CO ₂		
Project emissions			
Emission sources	GHG types		
Electricity consumption by blower(s) which supply air to aerator(s)	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The shaft power of reference blower(s) and project blower(s) is conservatively set in the following manner to conservatively calculate reference emissions and ensure the net emission reductions.

1. The estimated shaft power of the reference blower i during the period p (SP_{RE,i,p}) is

selected from the performance table of the blower *i* with the calculated daily discharge pressure of the reference blower *i* during the period *p* ($PS_{RE,i,p}$) and the calculated rotations per minute (RPM) of the reference blower *i* during the period *p* ($RPM_{RE,i,p}$). The performance table of the blower *i* is provided by manufacturer of the blower *i*.

 $SP_{RE,i,p} = f_{RE}(PS_{RE,i,p}, RPM_{RE,i,p})$

 $SP_{RE,i,p}$: Estimated shaft power of the reference blower *i* during the period *p* [kW] $PS_{RE,i,p}$: Calculated daily discharge pressure of the reference blower *i* during the

period *p* [Pa (G)] (gauge pressure, and so forth)

 $RPM_{RE,i,p}$: Calculated RPM of the reference blower *i* during the period *p* [rpm]

2. $PS_{RE,i,p}$ is calculated by the average daily discharge pressure of the project blower *i* monitored once a day during the period *p* ($PS_{PJ,ave,i,p}$) divided by the ratio of discharge pressure change at the blower *i* ($F_{PS,i}$). $F_{PS,i}$ is calculated by the highest daily discharge pressure of the project blower *i* monitored once a day during the parameter monitoring period *intpj* which start after completion of aerator installation ($PS_{PJ,high,i,intpj}$) divided by the lowest daily discharge pressure of the reference blower *i* monitored once a day during the parameter monitoring period *intre* before the aerator installation ($PS_{RE,low,i,intre}$).

 $PS_{RE,i,p} = PS_{PJ,ave,i,p} \div F_{PS,i}$ $F_{PS,i} = PS_{PJ,high,i,intpj} \div PS_{RE,low,i,intre}$

$PS_{PJ,ave,i,p}$:	Average daily discharge pressure of the project blower <i>i</i> during the
		period p [Pa (G)]
$F_{PS,i}$:	Ratio of discharge pressure change at the blower <i>i</i> [-]
$PS_{PJ,high,i,intpj}$:	Highest daily discharge pressure of the project blower <i>i</i> during the
		parameter monitoring period after completion of aerator installation
		[Pa (G)]
$PS_{RE,low,i,intre}$:	Lowest daily discharge pressure of the reference blower <i>i</i> during the
		parameter monitoring period before the aerator installation [Pa (G)]

If the project blower *i* is replaced at the time $T_{p,change}$ during the period *p*, emission reductions during the time $T_{p,start}$, which is the start time of the period *p*, and $T_{p,change}$ are calculated with $PS_{PJ,ave,i,p}$ which is monitored from $T_{p,start}$ to $T_{p,change}$. Emission reductions after $T_{p,change}$ are calculated based on $PS_{PJ,ave,i,p}$ which is monitored after $T_{p,change}$ to the end time of the period *p* ($T_{p,end}$). 3. $RPM_{RE,i,p}$ is calculated from the average RPM of the project blower *i* during the period *p* ($RPM_{PJ,ave,i,p}$) divided by the ratio of RPM change at the blower *i* ($F_{RPM,i}$). $F_{RPM,i}$ means the ratio of RPM change from the reference blower *i* to the project blower *i* at completion of aerator installation and is provided by the manufacturer of pulley because RPM is associated with specification of pulley. $RPM_{PJ,ave,i,p}$ is monitored by rotation speed meter once a day during the period *p*.

 $RPM_{RE,i,p} = RPM_{PJ,ave,i,p} \div F_{RPM,i}$

 $F_{RPM,i}$: Ratio of RPM change at the blower i [-] $RPM_{PJ,ave,i,p}$: Average RPM of the project blower i during the period p [rpm]

4. The estimated shaft power of the project blower *i* during the period p (*SP*_{*PJ*,*i*,*p*}) is selected from the performance table of the blower *i* with the *PS*_{*PJ*,*ave*,*i*,*p*} and *RPM*_{*PJ*,*ave*,*i*,*p*}.

 $SP_{PJ,i,p} = f_{PJ} (PS_{PJ,ave,i,p}, RPM_{PJ,ave,i,p})$

 $SP_{PJ,i,p}$: Estimated shaft power of the project blower *i* during the period *p* [kW]

- *Note 1: The performance table of the blower i shows relationship among discharge pressure* [*Pa*(*G*)], *RPM* [*rpm*] and shaft power [*kW*] of the blower i in tabular format.
- Note 2: Default value of the parameter monitoring period is 1 week excluding exceptional operation. The value of RPM of the blower i and depth of aeration pond(s) during the parameter monitoring period need to be the same as the value monitored before the installation of aerator. Monitored discharge pressure or RPM data on exceptional operation, such as during maintenance of blower, black out, accident of blower or aeration device etc., are excluded from data set for determining PS_{PJ,ave,i,p}, PS_{PJ,high,i,impj}, PS_{RE,low,i,intre}, and RPM_{PJ,ave,i,p}.

F.2. Calculation of reference emissions

The electricity consumption of the reference blower *i* during the period *p* ($EC_{RE,i,p}$) is calculated by the product of $SP_{RE,i,p}$, the motor efficiency of the reference blower *i* (H_i) and $OT_{RE,i,p}$. Since H_i is common to the project blower *i*, reference emissions are calculated by following equation.

$RE_p = \sum_{i} \left\{ \frac{OT_R}{OT_P} \right\}$	$\frac{E,i,p}{J,i,p} \times \frac{SP_{RE,i,p}}{SP_{PJ,i,p}} \times EC_{PJ,i,p} \times EF_{elec} \bigg\}$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
$OT_{RE,i,p}$: Operating time of the reference blower i during the period p [h/p]
$OT_{PJ,i,p}$: Operating time of the project blower i during the period p [h/p]
$SP_{RE,i,p}$: Estimated shaft power of the reference blower i during the period p [kW]
$SP_{PJ,i,p}$: Estimated shaft power of the project blower i during the period p [kW]
$EC_{PJ,i,p}$: Electricity consumption of the project blower i during the period p
	[kWh/p]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /kWh]

 $OT_{RE,i,p}$ is calculated from $OT_{PJ,i,p}$ added by the stop time of the project blower *i* during intermittent operation during the period *p* ($IT_{PJ,i,p}$) since the reference blower(s) is(are) not allowed to run intermittently and needs to be run continuously for preventing clogging of pores in diffuser.

$$OT_{RE,i,p} = OT_{PJ,i,p} + IT_{PJ,i,p}$$

 $IT_{PJ,i,p}$: Stop time of the project blower *i* during intermittent operation during the period *p* [h/p]

G. Calculation of project emissions

Project emissions are calculated by following equation.

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

PE_p	:	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$:	Electricity consumption of project blower i during the period p [kWh/p]
EF_{elec}	:	CO ₂ emission factor for consumed electricity [tCO ₂ /kWh]

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and project emissions, as follows:

$$ER_p = RE_p - PE_p$$

 ER_p : Emissions reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I.	Data and parameters fixed ex ante
Th	e source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		The most recent value available
	When project blower consumes only grid	at the time of validation is
	electricity or captive electricity, the project	applied and fixed for the
	participant applies the CO ₂ emission factor	monitoring period thereafter.
	respectively.	The data is sourced from " Grid
		Emission Factor (GEF) of
	When project blower may consume both grid	Thailand", endorsed by
	electricity and captive electricity, the project	Thailand Greenhouse Gas
	participant applies the CO ₂ emission factor	Management Organization
	with lower value.	unless otherwise instructed by
		the Joint Committee.
	[CO ₂ emission factor]	[Captive electricity]
	For grid electricity: The most recent value	For the option a)
	available from the source stated in this table at	Specification of the captive
	the time of validation	power generation system
		provided by the manufacturer
	For captive electricity, it is determined based	$(\eta_{elec} [\%]).$
	on the following options:	CO ₂ emission factor of the
		fossil fuel type used in the

a) Calculated from its power generation	captive power generation
efficiency (η_{elec} [%]) obtained from	system (<i>EF_{fuel}</i> [tCO ₂ /GJ])
manufacturer's specification	
The power generation efficiency based on	For the option b)
lower heating value (LHV) of the captive	Generated and supplied
power generation system from the	electricity by the captive power
manufacturer's specification is applied;	generation system $(EG_{PJ,p})$
	[MWh/p]).
$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	Fuel amount consumed by the
	captive power generation
b) Calculated from measured data	system $(FC_{PJ,p}$ [mass or
The power generation efficiency calculated	volume/p]).
from monitored data of the amount of fuel	Net calorific value (NCV _{fuel}
input for power generation $(FC_{PJ,p})$ and the	[GJ/mass or volume]) and CO ₂
amount of electricity generated ($EG_{PJ,p}$)	emission factor of the fuel
during the monitoring period p is applied. The	$(EF_{fuel} [tCO_2/GJ])$ in order of
measurement is conducted with the monitoring	preference:
equipment to which calibration certificate is	1) values provided by the fuel
issued by an entity accredited under	supplier;
national/international standards;	2) measurement by the project
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PI,p}}$	participants;
$EI_{elec} = I G_{PJ,p} \times HOV fuel \times EI_{fuel} \times EG_{PJ,p}$	3) regional or national default
Where:	values;
NCV _{fuel} : Net calorific value of consumed	4) IPCC default values
fuel [GJ/mass or volume]	provided in tables 1.2 and 1.4
	of Ch.1 Vol.2 of 2006 IPCC
	Guidelines on National GHG
Note:	Inventories. Lower value is
In case the captive electricity generation	applied.
system meets all of the following conditions,	
the value in the following table may be	
applied to EF_{elec} depending on the consumed	[Captive electricity with diesel
fuel type.	fuel]
	CDM approved small scale
• The system is non-renewable generation	methodology: AMS-I.A.
system	
• Electricity generation capacity of the	[Captive electricity with natural

	system is less than or equal to 15 MW			gas]
				2006 IPCC Guidelines on
	fuel type	Diesel fuel	Natural gas	National GHG Inventories for the source of EF of natural gas.
	EF _{elec}	0.8 *1	0.46 *2	CDM Methodological tool
				"Determining the baseline efficiency of thermal or electric
	*1 The most recent value at the time of			energy generation systems
	validation is applied.			version02.0" for the default
	*2 The value is calculated with the equation in			efficiency for off-grid power
	the option a) above. The lower value of default			plants.
	effective CO ₂ emission factor for natural gas			
	$(0.0543tCO_2/GJ)$, and the most efficient value			
	of default effic systems (42%) a	•	f-grid gas turbine	
$PS_{RE,low,i,intre}$	Lowest daily discharge pressure of the		Discharge pressure is	
	reference blowe	r <i>i</i> during the	parameter	monitored by pressure gauge
	monitoring period	od intre befor	re the aerator	installed at discharge air pipe of
	installation [Pa (G)]		the blower <i>i</i> . $PS_{RE, low, i, intre}$ needs	
	_			to be monitored before the
	PS _{RE,low,i,intre} is se	elected from	the daily data	aerator installation.
	which is monitored once a day during the			
	parameter monitoring period before the aerator			
	installation.	8 P		
$PS_{PJ,high,i,intpj}$	Highest daily di	scharge press	sure of the project	Discharge pressure is measured
	blower <i>i</i> during	the paramete	r monitoring	by pressure gauge installed at
	period intpj afte	r completion	of aerator	discharge air pipe of the blower
	installation [Pa	(G)]		<i>i</i> . <i>PS</i> _{PJ,high,i,intpj} needs to be
				monitored just after completion
	<i>PS</i> _{PJ,high,i,intpj} is	selected fro	m the daily data	of aerator installation.
	which is monit	tored once	a day during the	
			1 which start after	
	completion of a			
$F_{PS,i}$	Ratio of dischar	ge pressure c	hange at the	$F_{PS,i}$ is calculated by
	blower <i>i</i> [-]			PS _{PJ,high,i,intpj} divided by
				PS _{RE,low,i,intre} .
F _{RPM,i}	Ratio of RPM c	hange at the	blower <i>i</i> [-]	$F_{RPM,i}$ is provided by the

	manufacturer of pulley or
	calculated from the diameter of
	pulleys of the project/reference
	blower <i>i</i> .