JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia
Name of the methodology proponents	myclimate Japan Co., Ltd.
submitting this form	
Sectoral scope(s) to which the Proposed	03. Energy Demand
Methodology applies	
Title of the proposed methodology, and	Installation of Inverter-Type Air Conditioning
version number	System for Cooling for Grocery Store
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
	1) Additional information on reference
	emissions
Date of completion	04.09.2014

History of the proposed methodology

Version	Date	Contents revised		
01.0	04.09.2014	First edition		

A. Title of the methodology

Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store Version 1.0

B. Terms and definitions

Terms	Definitions		
Inverter-type air conditioning	Inverter-type air conditioning system is a type of air		
system	conditioning system which contains inverter, an apparatus		
	to control the speed of the compressor motor in order to		
	maintain the ambient temperature. While the compressor		
	in a non-inverter-type air conditioning system can only		
	either operates in maximum capacity or stops entirely, the		
	compressor in an inverter-type air conditioning system		
	operates at adjustable speeds.		
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity		
(COP)	per rated power consumption of the air conditioning		
	system. The values of cooling capacity and rated power		
	consumption are defined under specific temperature stated		
	in ISO 5151:2010.		
Cooling capacity	Cooling capacity is the ability of air conditioning system		
	to remove heat, calculated with amount of heat removed		
	per unit time at specific temperature.		

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures	energy by introducing inverter-type air conditioning system for	
	cooling for grocery store in Indonesia.	
Calculation of reference	Reference emissions are GHG emissions from using reference air	
emissions	conditioning system, calculated with power consumption of	
	project air conditioning system, ratio of COPs of project/reference	
	air conditioning system, and CO_2 emission factor for consumed	

	electricity.	
Calculation of project	Project emissions are GHG emissions from using project air	
emissions	conditioning system, calculated with power consumption of	
	installed inverter-type air conditioning system, and CO ₂ emission	
	factor for consumed electricity.	
Monitoring parameters	Power consumption of project air conditioning system	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Single split inverter-type air conditioning sys	stem ¹ is newly installed or				
	installed to replace existing air conditioning system for grocery store whose					
	selling area is less than 400 (four hundred) n	n ² .				
Criterion 2	The installed air conditioning system is wall	mounted type and/or ceiling				
	cassette type, and has a COP value higher that					
	table below.					
	Cooling Capacity [kW]	Cooling Capacity [kW] Reference COP				
	$2.5 < x \leq 4.1$	4.00				
	$4.1 < x \le 5.3$	3.59				
	$5.3 < x \le 7.1$	2.96				
	$7.1 < x \le 14.2$	$7.1 < x \le 14.2$ 2.85				
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for the installed air					
	conditioning system is 0 (zero).					
Criterion 4	Plan for not releasing refrigerant used for project air conditioning system is					
	prepared. In the case of replacing the existing air conditioning system with the					
	project air conditioning system, refrigerant used for the existing air					
	conditioning system is not released to the air.					

¹ Under the single split system, one indoor unit is connected to one outdoor unit.

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Power consumption by reference air conditioning system	CO ₂		
Project emissions			
Emission sources	GHG types		
Power consumption by project air conditioning system	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with power consumption of project air conditioning system, ratio of COPs of project/reference air conditioning system, and CO2 emission factor for electricity consumed.

The COP of reference air conditioning system is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- 1. The COP value tends to decrease as the cooling capacity increases.
- 2. The reference COP, at a certain cooling capacity, is set at a maximum value in the respective cooling capacity range.
- 3. The maximum values of COP in the respective cooling capacity ranges are defined as COP_{RE} .

F.2. Calculation of reference emissions

	$RE_{p} = \sum_{i} \{EC_{PJ,i,p} \times (COP_{PJ,i} \div COP_{RE,i})\} \times EF_{elec}$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Power consumption of project air conditioning system i during the period p
	[MWh/p]
$COP_{PJ,i}$: COP of project air conditioning system <i>i</i> [-]
$COP_{RE,i}$: COP of reference air conditioning system <i>i</i> [-]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Type of air conditioning system [-]

G. Calculation of project emissions

	$PE_{p} = \sum_{i} EC_{PJ,i,p} \times EF_{elec}$
PE_p	: Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Power consumption of project air conditioning system i during the period p
	[MWh/p]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Type of air conditioning system [-]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$				
ER_p	: Emissions reductions during the period p [tCO ₂ /p]			
RE_p	: Reference emissions during the period p [tCO ₂ /p]			
PE_p	: Project emissions during the period p [tCO ₂ /p]			

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of Data	Source
	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project air conditioning system consumes	Updates on Grid Electricity
	only grid electricity or captive electricity, the	Emission Factors
	project participant applies the CO ₂ emission factor	(calculated in year 2013),
	respectively.	National Committee on
	When project air conditioning system may	Clean Development
EE	consume both grid electricity and captive	Mechanism, Indonesia,
EF_{elec}	electricity, the project participant applies the CO ₂	unless otherwise instructed
	emission factor with lower value.	by the Joint Committee.
	[CO ₂ emission factor]	[Captive electricity]
	For grid electricity: The most recent value	CDM approved small scale
	available from the source stated in this table at the	methodology AMS-I.A
	time of validation	

	For c	captive electricity: 0.8* [tC0		
		e most recent value availabl		
		oved small scale methodolo		
	••	of validation is applied.	8,	
		of reference air conditionin	ng system <i>i</i> , as	Nominal value available on
		ated in Table 2. The values	product catalogs,	
	capacity and rated power consumption used in the			specification documents or
	calculation of COP are obtained from product			websites.
		ogs, specification documen	•	
		r manufacturers in Indones		The default values are
	5			derived from the result of
		Table 2 : COP for R	eference	survey on COP of air
		Air Conditioning Syster	m (COP _{RE,i})	conditioning system from
$COP_{RE,i}$	i	Cooling capacity [kW]	Reference COP	manufacturers that have
	1	2.5kW <x≦4.1kw< td=""><td>4.00</td><td>high market share. The</td></x≦4.1kw<>	4.00	high market share. The
	2	4.1kW <x≦5.3kw< td=""><td>3.59</td><td>default values should be</td></x≦5.3kw<>	3.59	default values should be
	3	5.3kW <x≦7.1kw< td=""><td>2.96</td><td>revised if necessary from</td></x≦7.1kw<>	2.96	revised if necessary from
	4	7.1kW <x≦14.2kw< td=""><td>2.85</td><td>survey result which is</td></x≦14.2kw<>	2.85	survey result which is
				conducted by JC or project
				participants every three
				years. The survey should
				prove the use of clear
				methodology.
	COP	of project air conditioning	system <i>i</i> . The	Specifications of project air
	value of cooling capacity and rated power			conditioning system for the
$COP_{PJ,i}$	consumption used in the calculation of COP		quotation or factory	
	prepa	ared by manufacturer is app	olied.	acceptance test data by
			manufacturer.	