Joint Crediting Mechanism Approved Methodology ID_AM024 "Replacement of diffuser with aerator in aeration pond"

A. Title of the methodology

Replacement of diffuser with aerator in aeration pond, Version 01.0

B. Terms and definitions

Terms	Definitions	
Diffuser	Aeration device in the shape of a disc, tube or plate, which is	
	used to supply air from blowers into wastewater for aerobic	
	wastewater treatment by producing fine bubbles in aeration	
	ponds for wastewater treatment.	
Aerator	Aeration device without power unit, which is used to supply	
	air from blowers into wastewater for aerobic wastewater	
	treatment by mixing air and wastewater in itself and	
	producing water circulation in the entire aeration ponds.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	For aerobic wastewater treatment, aeration device(s) is(are)	
measures	used for supplying air into wastewater. Replacement of the	
	diffuser with the aerator enables to reduce air discharge pressure	
	at blower(s), to run blower(s) not continuously but	
	intermittently and to reduce discharge amounts of air from	
	blower(s). By these effects, electricity consumption at blower(s)	
	can be reduced.	
Calculation of reference	<i>Reference emissions are calculated with electricity consumption</i>	
emissions	missions of blower(s) connected with project aeration devices of aerat	
	(hereinafter referred to as "project blower(s)"), ratio of	
	operating time of blower(s) connected with reference aeration	
	devices of diffuser (hereinafter referred to as "reference	

	blower(s)") and project blower(s), ratio of shaft power of		
	reference/project blower(s), and CO ₂ emission factor for		
	consumed electricity.		
Calculation of project Project emissions are calculated with electricity consu			
emissions	project blower(s) and CO ₂ emission factor for consumed		
	electricity.		
Monitoring parameters	• Electricity consumption at project blower(s)		
	• Operating time of project blower(s)		
	• Stop time of project blower(s) during intermittent operation		
	• Discharge pressure of project blower(s)		
	· Rotations per minute of project blower(s)		

D. Eligibility criteria		
-------------------------	--	--

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Aerator(s) is(are) installed to replace existing diffuser(s) in existing aeration		
	pond(s) for wastewater treatment.		
Criterion 2	Effluent wastewater quality meets the wastewater quality standards on items		
	such as biochemical oxygen demand (BOD), chemical oxygen demand (COD)		
	and total suspended solids (TSS) which are applicable to the project site.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by blower(s) which supply air to diffuser(s)	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity consumption by blower(s) which supply air to aerator(s)	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The shaft power of reference blower(s) and project blower(s) is conservatively set in the

following manner to conservatively calculate reference emissions and ensure the net emission reductions.

1. The estimated shaft power of the reference blower *i* during the period *p* ($SP_{RE,i,p}$) is selected from the performance table of the blower *i* with the calculated daily discharge pressure of the reference blower *i* during the period *p* ($PS_{RE,i,p}$) and the calculated rotations per minute (RPM) of the reference blower *i* during the period *p* ($RPM_{RE,i,p}$). The performance table of the blower *i* is provided by manufacturer of the blower *i*.

 $SP_{RE,i,p} = f_{RE}(PS_{RE,i,p}, RPM_{RE,i,p})$

$SP_{RE,i,p}$:	Estimated shaft power of the reference blower i during the period p [kW]
$PS_{RE,i,p}$:	Calculated daily discharge pressure of the reference blower <i>i</i> during the
		period p [Pa (G)] (gauge pressure, and so forth)
$RPM_{RE,i,p}$:	Calculated RPM of the reference blower <i>i</i> during the period <i>p</i> [rpm]

2. $PS_{RE,i,p}$ is calculated by the average daily discharge pressure of the project blower *i* monitored once a day during the period *p* ($PS_{PJ,ave,i,p}$) divided by the ratio of discharge pressure change at the blower *i* ($F_{PS,i}$). $F_{PS,i}$ is calculated by the highest daily discharge pressure of the project blower *i* monitored once a day during the parameter monitoring period *intpj* which start after completion of aerator installation ($PS_{PJ,high,i,intpj}$) divided by the lowest daily discharge pressure of the reference blower *i* monitored once a day during the parameter monitoring period *intre* before the aerator installation ($PS_{RE,low,i,intre}$).

 $PS_{RE,i,p} = PS_{PJ,ave,i,p} \div F_{PS,i}$ $F_{PS,i} = PS_{PJ,high,i,intpj} \div PS_{RE,low,i,intre}$

$PS_{PJ,ave,i,p}$:	Average daily discharge pressure of the project blower <i>i</i> during the
		period p [Pa (G)]
$F_{PS,i}$:	Ratio of discharge pressure change at the blower <i>i</i> [-]
$PS_{PJ,high,i,intpj}$:	Highest daily discharge pressure of the project blower <i>i</i> during the
		parameter monitoring period after completion of aerator installation
		[Pa (G)]
$PS_{RE, low, i, intre}$:	Lowest daily discharge pressure of the reference blower <i>i</i> during the
		parameter monitoring period before the aerator installation [Pa (G)]
If the project	b	lower <i>i</i> is replaced at the time $T_{p,change}$ during the period <i>p</i> , emission

reductions during the time $T_{p,start}$, which is the start time of the period p, and $T_{p,change}$ are calculated with $PS_{PJ,ave,i,p}$ which is monitored from $T_{p,start}$ to $T_{p,change}$. Emission reductions after $T_{p,change}$ are calculated based on $PS_{PJ,ave,i,p}$ which is monitored after $T_{p,change}$ to the end time of the period p ($T_{p,end}$).

3. $RPM_{RE,i,p}$ is calculated from the average RPM of the project blower *i* during the period *p* ($RPM_{PJ,ave,i,p}$) divided by the ratio of RPM change at the blower *i* ($F_{RPM,i}$). $F_{RPM,i}$ means the ratio of RPM change from the reference blower *i* to the project blower *i* at completion of aerator installation and is provided by the manufacturer of pulley because RPM is associated with specification of pulley. $RPM_{PJ,ave,i,p}$ is monitored by rotation speed meter once a day during the period *p*.

 $RPM_{RE,i,p} = RPM_{PJ,ave,i,p} \div F_{RPM,i}$

 $F_{RPM,i}$: Ratio of RPM change at the blower *i* [-] $RPM_{PJ,ave,i,p}$: Average RPM of the project blower *i* during the period *p* [rpm]

4. The estimated shaft power of the project blower *i* during the period p ($SP_{PJ,i,p}$) is selected from the performance table of the blower *i* with the $PS_{PJ,ave,i,p}$ and $RPM_{PJ,ave,i,p}$.

 $SP_{PJ,i,p} = f_{PJ}(PS_{PJ,ave,i,p}, RPM_{PJ,ave,i,p})$

 $SP_{PJ,i,p}$: Estimated shaft power of the project blower *i* during the period *p* [kW]

- *Note 1: The performance table of the blower i shows relationship among discharge pressure* [*Pa*(*G*)], *RPM* [*rpm*] and shaft power [*kW*] of the blower i in tabular format.
- Note 2: Default value of the parameter monitoring period is 1 week excluding exceptional operation. The value of RPM of the blower i and depth of aeration pond(s) during the parameter monitoring period need to be the same as the value monitored before the installation of aerator. Monitored discharge pressure or RPM data on exceptional operation, such as during maintenance of blower, black out, accident of blower or aeration device etc., are excluded from data set for determining PS_{PJ,ave,i,p}, PS_{PJ,high,i,impj}, PS_{RE,low,i,intre}, and RPM_{PJ,ave,i,p}.

F.2. Calculation of reference emissions

The electricity consumption of the reference blower *i* during the period p (*EC*_{*RE,i,p*}) is calculated by the product of *SP*_{*RE,i,p*}, the motor efficiency of the reference blower *i* (*H*_{*i*}) and *OT*_{*RE,i,p*}. Since *H*_{*i*} is common to the project blower *i*, reference emissions are calculated by following equation.

$$RE_{p} = \sum_{i} \left\{ \frac{OT_{RE,i,p}}{OT_{PJ,i,p}} \times \frac{SP_{RE,i,p}}{SP_{PJ,i,p}} \times EC_{PJ,i,p} \times EF_{elec} \right\}$$

$$RE_{p} \qquad : \text{ Reference emissions during the period } p \text{ [tCO_2]}$$

RE_p	Reference emissions during the period p [tCO ₂ /p]
$OT_{RE,i,p}$	Operating time of the reference blower i during the period p [h/p]
$OT_{PJ,i,p}$	Operating time of the project blower i during the period p [h/p]
$SP_{RE,i,p}$	Estimated shaft power of the reference blower i during the period p [kW]
$SP_{PJ,i,p}$	Estimated shaft power of the project blower i during the period p [kW]
$EC_{PJ,i,p}$	Electricity consumption of the project blower i during the period p
	[kWh/p]
EF_{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /kWh]

 $OT_{RE,i,p}$ is calculated from $OT_{PJ,i,p}$ added by the stop time of the project blower *i* during intermittent operation during the period *p* ($IT_{PJ,i,p}$) since the reference blower(s) is(are) not allowed to run intermittently and needs to be run continuously for preventing clogging of pores in diffuser.

 $OT_{RE,i,p} = OT_{PJ,i,p} + IT_{PJ,i,p}$

 $IT_{PJ,i,p}$: Stop time of the project blower *i* during intermittent operation during the period *p* [h/p]

G. Calculation of project emissions

Project emissions are calculated by following equation.

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

PE_p	: Project emissions during the period <i>p</i> [tCO ₂ /p]
$EC_{PJ,i,p}$: Electricity consumption of project blower <i>i</i> during the period <i>p</i> [kWh/p]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /kWh]

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and project emissions, as follows:

 $ER_p = RE_p - PE_p$

ER_p	: Emissions reductions during the period p $[tCO_2/p]$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		The data is sourced from
	When project blower consumes only grid	"Emission Factors of
	electricity or captive electricity, the project	Electricity Interconnection
	participant applies the CO ₂ emission factor	Systems", National Committee
	respectively.	on Clean Development
		Mechanism (Indonesian DNA
	When project blower may consume both grid	for CDM), based on data
	electricity and captive electricity, the project	obtained by Directorate
	participant applies the CO ₂ emission factor	General of Electricity, Ministry
	with lower value.	of Energy and Mineral
		Resources, Indonesia, unless
		otherwise instructed by the
	[CO ₂ emission factor]	Joint Committee.
	For grid electricity: The most recent value	
	available from the source stated in this table at	[Captive electricity]

the time of validation	For the option a)
	Specification of the captive
For captive electricity, it is determined based	power generation system
on the following options:	provided by the manufacturer
	$(\eta_{elec} [\%]).$
a) Calculated from its power generation	CO ₂ emission factor of the
efficiency (<i>q_{elec}</i> [%]) obtained from	fossil fuel type used in the
manufacturer's specification	captive power generation
The power generation efficiency based on	system (<i>EF_{fuel}</i> [tCO ₂ /GJ])
lower heating value (LHV) of the captive	
power generation system from the	For the option b)
manufacturer's specification is applied;	Generated and supplied
100	electricity by the captive power
$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	generation system $(EG_{PJ,p})$
	[MWh/p]).
b) Calculated from measured data	Fuel amount consumed by the
The power generation efficiency calculated	captive power generation
from monitored data of the amount of fuel	system $(FC_{PJ,p}$ [mass or
input for power generation $(FC_{PJ,p})$ and the	volume/p]).
amount of electricity generated $(EG_{PJ,p})$	Net calorific value (NCV _{fuel}
during the monitoring period p is applied. The	[GJ/mass or volume]) and CO ₂
measurement is conducted with the monitoring	emission factor of the fuel
equipment to which calibration certificate is	(EF _{fuel} [tCO ₂ /GJ]) in order of
issued by an entity accredited under	preference:
national/international standards;	1) values provided by the fuel
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PI,p}}$	supplier;
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times {EG_{PJ,p}}$	2) measurement by the project
Where:	participants;
NCV _{fuel} : Net calorific value of consumed	3) regional or national default
fuel [GJ/mass or volume]	values;
	4) IPCC default values
	provided in tables 1.2 and 1.4
Note:	of Ch.1 Vol.2 of 2006 IPCC
In case the captive electricity generation	Guidelines on National GHG
system meets all of the following conditions,	Inventories. Lower value is
the value in the following table may be	applied.
applied to EF_{elec} depending on the consumed	

	fuel type.			[Captive electricity with diesel
	 The system is non-renewable generation system Electricity generation capacity of the system is less than or equal to 15 MW 		fuel] CDM approved small scale methodology: AMS-I.A.	
	fuel type	Diesel fuel	Natural gas	gas] 2006 IPCC Guidelines on
	EF _{elec}	0.8 *1	0.46 *2	National GHG Inventories for
				the source of EF of natural gas.CDMMethodologicaltool
	*1 The most recent value at the time of validation is applied.		"Determining the baseline efficiency of thermal or electric	
	*2 The value is calculated with the equation in		energy generation systems version02.0" for the default	
	the option a) above. The lower value of default effective CO ₂ emission factor for natural gas		efficiency for off-grid power	
	(0.0543tCO ₂ /GJ), and the m	ost efficient value	plants.
	of default efficiency for off-grid gas turbine			
	systems (42%) are applied.			
$PS_{RE,low,i,intre}$	Lowest daily discharge pressure of the		Discharge pressure is	
	reference blower <i>i</i> during the parameter		monitored by pressure gauge	
	monitoring period <i>intre</i> before the aerator		installed at discharge air pipe of	
	installation [Pa	(G)]		the blower <i>i</i> . $PS_{RE, low, i, intre}$ needs
		1 . 10		to be monitored before the
	$PS_{RE, low, i, intre}$ is se		•	aerator installation.
	which is monitored once a day during the			
	installation.	toring period	before the aerator	
$PS_{PJ,high,i,intpj}$			Discharge pressure is measured	
- ~r J,nugn,t,tnup]	blower <i>i</i> during the parameter monitoring		by pressure gauge installed at	
	period <i>intpj</i> after completion of aerator		discharge air pipe of the blower	
	installation [Pa	-		<i>i.</i> $PS_{PJ,high,i,intpj}$ needs to be
		、 / 」		monitored just after completion
	<i>PS_{PJ,high.i.intpi}</i> is	selected fro	om the daily data	of aerator installation.
			a day during the	
			d which start after	

	completion of aerator installation.	
$F_{PS,i}$	Ratio of discharge pressure change at the	$F_{PS,i}$ is calculated by
	blower <i>i</i> [-]	PS _{PJ,high,i,intpj} divided by
		$PS_{RE,low,i,intre}$.
F _{RPM,i}	Ratio of RPM change at the blower <i>i</i> [-]	$F_{RPM,i}$ is provided by the
		manufacturer of pulley or
		calculated from the diameter of
		pulleys of the project/reference
		blower <i>i</i> .

History of the document

Version	Date	Contents revised
01.0	17 September 2020	Electronic decision by the Joint Committee
		Initial approval.