Joint Crediting Mechanism Approved Methodology ID_AM021 "Electricity generation by rehabilitation of run-of-river hydro power generation system(s) in Indonesia"

A. Title of the methodology

Electricity generation by rehabilitation of run-of-river hydro power generation system(s) in Indonesia, ver1.0

B. Terms and definitions

Terms	Definitions	
Run-of-river hydro power	A method of power generation that uses water running in a river	
generation	or a waterway directly into power generation unit.	
Rehabilitation	A method to restore existing hydro power generations system(s)	
	with or without adding new power plants and/or units, which may	
	increase power generation capacity.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Displacement of grid electricity including national/regional and	
measures	isolated grids and/or captive electricity by rehabilitation of hydro	
	power generation system(s).	
Calculation of reference	Reference emissions are calculated with the net electricity output	
emissions	of the hydro power generation system(s), maximum output of	
	reference hydro power generation system(s), maximum output of	
	project hydro power generation system(s), multiplied by either; 1)	
	conservative emission factor of the grid, or 2) conservative	
	emission factor of the captive diesel power generator based on the	
	location of the projects.	
Calculation of project	Project emissions are the emissions from the hydro power	
emissions	generation system(s), which are assumed to be zero.	
Monitoring parameters	The quantity of the net electricity generated by the project hydro	

power generation system(s).	
-----------------------------	--

D. Eligibility criteria				
This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	The project increases the power generation capacity of an existing run-of-river			
	hydro power generation system(s) by rehabilitation.			

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Consumption of grid electricity including national/regional and	CO ₂	
isolated grids and/or captive electricity		
Project emissions		
Emission sources	GHG types	
Generation of electricity from the hydro power generation system(s)	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by the amount of net electricity generated by the project hydro power generation system(s), the maximum output of the reference hydro power generation system(s), the maximum output of the project hydro power generation system(s), and CO_2 emission factors of grid electricity including national/regional and isolated grids and/or captive electricity, which is displaced by the project.

The default emission factor is set in a conservative manner for the Indonesian regional grids. The default emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run (LCMR) resources for each regional grid in Indonesia during the year 2013-2015 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions. The conservative emission factor of each plant is calculated as 0.795 tCO₂/MWh for coal-fired power plant and 0.320 tCO₂/MWh for gas-fired power plant based on the survey on heat

efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated as 0.533 tCO₂/MWh based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the hydro power generation plant in a proposed project activity is directly connected or connected via an internal grid, not connecting to either an isolated grid or a captive power generator, to a national/regional grid (Case 1), the value of operating margin including LCMR resources, calculated using the best heat efficiency among currently operational plants in Indonesia for the emission factors of fossil fuel power plants, are applied. The emission factors to be applied are set as "Emission factor for Case 1 (tCO₂/MWh)" as shown in Section I. below.

In case the hydro power generation system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional, and an isolated grid and/or a captive power generator (Case 2), the lower values between emission factors of "Emission factor for Case 1 (tCO₂/MWh)" and the conservative emission factors of diesel-fired power plant of 0.533 tCO₂/MWh is applied. The emission factors to be applied are set as "Emission factor for Case 2 (tCO₂/MWh)" as shown in Section I. below.

In the case that the hydro power generation system(s) in a proposed project activity is only connected to an internal grid connecting to an isolated grid and/or a captive power generator (Case 3), the emission factor of a diesel generator calculated by applying a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel generator is applied, which is set as $0.533 \text{ tCO}_2/\text{MWh}$.

The emission factors to be applied for each case are shown in Section I.

F.2. Calculation of reference emissions

$RE_{p} = \sum_{i} \{EG_{i,p} \times \left(1 - \frac{MO_{RE,i}}{MO_{PJ,i}}\right) \times EF_{RE,i}\}$
RE_p : Reference emissions during the period p [tCO ₂ /p]
$\mathrm{EG}_{i,p}$: Quantity of the net electricity generated by the project hydro power generation
system <i>i</i> during the period <i>p</i> [MWh/p]
$MO_{RE,i}$: Maximum output of the reference hydro power generation system <i>i</i> [MW]
$MO_{PJ,i}$: Maximum output of the project hydro power generation system <i>i</i> [MW]
$EF_{RE,i}$: Reference CO ₂ emission factor for the project hydro power generation system <i>i</i>

[tCO₂/MWh]

G. Calculation of project emissions

 $PE_p = 0$

 PE_p : Project emissions during the period *p* [tCO₂/p]

H. Calculation of emissions reductions

$$\begin{split} ER_{p} &= RE_{p} - PE_{p} \\ &= RE_{p} \end{split}$$

 ER_p : Emission reductions during the period *p* [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
MO _{RE,i}	Maximum output of reference hydro power	Specifications of
	generation system <i>i</i> .	reference hydro power
		generation system <i>i</i> .
MO _{PJ,i}	Maximum output of project hydro power generation	Specifications of project
	system <i>i</i> .	hydro power generation
		system <i>i</i> .
$EF_{RE,i}$	Reference CO ₂ emission factor for the project hydro	Additional information
	power generation system <i>i</i> .	The default emission
		factor value is obtained
	The value for $\text{EF}_{\text{RE},i}$ is selected from the emission	from a study of
	factor based on the national/regional grid ($EF_{RE,grid})$ or	electricity systems in
	based on isolated grid and/or a captive diesel power	Indonesia and the most
	generator ($EF_{RE,cap}$) in the following manner:	efficient diesel power
	In case the hydro power generation system(s) in a	generator (a default

proposed project activity is dire	ectly connected, or	value of 49% heat
connected via an internal grid not connecting to either		efficiency is above the
an isolated grid or a captive po	wer generator, to a	value of the world's
national/regional grid (Case 1),	EF _{RE,grid} is set as	leading diesel
follows:		generator).
Iomoli grid	0.616 tCO ₂ /MWh	The default value is
Jamali grid Sumatra grid	$0.477 \text{ tCO}_2/\text{MWh}$	revised if deemed
Batam – Bintan grid	0.664 tCO ₂ /MWh	necessary by the JC.
Tanjung Balai Karimun, Tanjung Batu, Kelong, Ladan,	0.555 tCO ₂ /MWh	5 5
Midai, P Buru, Ranai,		
Sedanau, and Tarempa grids Bangka, Belitung, S Nasik,	0.553 tCO ₂ /MWh	
and Seliu grids	0.555 1002 101001	
Khatulistiwa grid	$0.532 \text{ tCO}_2/\text{MWh}$	
Barito grid Mahakam grid	0.666 tCO ₂ /MWh 0.527 tCO ₂ /MWh	
Tarakan grid	0.493 tCO ₂ /MWh	
Sulutgo grid	0.325 tCO ₂ /MWh	
Sulselbar grid	0.320 tCO2/MWh	
Kendari, Bau Bau, Kolaka,	0.593 tCO ₂ /MWh	
Lambuya, Wangi Wangi, and Raha grids		
Sulbangteng grid	0.517 tCO ₂ /MWh	
Lombok, Bima, and Sumbawa	0.561 tCO ₂ /MWh	
grids		
Kupang, Ende, Maumere, Waingapu, Labuan Bajo, and	0.507 tCO ₂ /MWh	
Larantuka grids		
Ambon, Tual, and Namlea	0.533 tCO ₂ /MWh	
grids Tobelo and Ternate Tidore	0.532 tCO ₂ /MWh	
grids		
Jayapura, Timika, Merauke, and Biak grids	0.523 tCO ₂ /MWh	
Sorong, Nabire, and	0.525 tCO ₂ /MWh	
Manokwari grids		
In case the hydro power genera	tion system(s) in a	
proposed project activity is connected to an internal		
grid connecting to both a nationa		
an isolated grid and/or a captiv		
(Case 2), $EF_{RE,grid}$ is set as follows		
Jamali – Bintan grid	0.533 tCO ₂ /MWh	
Sumatra grid	0.477 tCO ₂ /MWh	
Batam grid Tanjung Balai Karimun,	0.533 tCO ₂ /MWh 0.533 tCO ₂ /MWh	
ranjung Dalat Karifiluli,	0.555 ICO ₂ /IVI W II	

	Tanjung Batu, Kelong, Ladan,		
	Midai, P Buru, Ranai, Sedanau,		
	and Tarempa grids		
	Bangka, Belitung, S Nasik, and	0.533 tCO ₂ /MWh	
	Seliu grids		
	Khatulistiwa grid	0.532 tCO ₂ /MWh	
	Barito grid	0.533 tCO ₂ /MWh	
	Mahakam grid	0.527 tCO ₂ /MWh	
	Tarakan grid	0.493 tCO ₂ /MWh	
	Sulutgo grid	0.325 tCO ₂ /MWh	
	Sulselbar grid	0.320 tCO ₂ /MWh	
	Kendari, Bau Bau, Kolaka,	0.533 tCO2/MWh	
	Lambuya, Wangi Wangi, and		
	Raha grids		
	Sulbangteng grid	0.517 tCO ₂ /MWh	
	Lombok, Bima, and Sumbawa	0.533 tCO ₂ /MWh	
	grids		
	Kupang, Ende, Maumere,	0.507 tCO2/MWh	
	Waingapu, Labuan Bajo, and		
	Larantuka grids		
	Ambon, Tual, and Namlea grids	0.533 tCO ₂ /MWh	
	Tobelo and Ternate Tidore grids	0.532 tCO ₂ /MWh	
	Jayapura, Timika, Merauke, and	0.523 tCO ₂ /MWh	
	Biak grids	<u>-</u>	
	Sorong, Nabire, and	0.525 tCO2/MWh	
	Manokwari grids		
	0		
	In case the hydro power genera	tion system(s) in a	
	proposed project activity is conn	ected to an internal	
	grid which is not connected to	a national/regional	
	grid, and only connected to an is	olated grid and/or a	
	captive power generator (Case	3), EF _{RE,cap} : 0.533	
	tCO ₂ /MWh is applied.	-	
J			

History of the document

Version	Date	Contents revised
01.0	31 October 2019	JC9, Annex 2
		Initial approval.