Joint Crediting Mechanism Approved Methodology ID_AM013 "Installation of Solar PV System"

A. Title of the methodology

Installation of Solar PV System, Ver. 1.0

B. Terms and definitions

Terms	Definitions
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight into
	electricity by the use of photovoltaic (PV) modules. The
	system also includes ancillary equipment such as inverters
	required to change the electrical current from direct current
	(DC) to alternating current (AC).

C. Summary of the methodology

Items	Summary
GHG emission reduction	Displacement of grid electricity including national/regional and
measures	isolated grids and/or captive electricity by installation and
	operation of solar PV system(s).
Calculation of reference	Reference emissions are calculated on the basis of the AC
emissions	output of the solar PV system(s) multiplied by either; 1)
	conservative emission factor of the grid, or 2) conservative
	emission factor of the captive diesel power generator.
Calculation of project	Project emissions are the emissions from the solar PV system(s),
emissions	which are assumed to be zero.
Monitoring parameters	The quantity of the electricity generated by the project solar PV
	system(s).

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs solar PV system(s).	
Criterion 2	The PV modules are certified for design qualifications (IEC 61215, IEC 61646	
	or IEC 62108) and safety qualification (IEC 61730-1 and IEC 61730-2).	
Criterion 3	The equipment to monitor output power of the solar PV system(s) and irradiance	
	is installed at the project site.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Consumption of grid electricity including national/regional and isolated	CO_2	
grids and/or captive electricity		
Project emissions		
Emission sources	GHG types	
Generation of electricity from the solar PV system(s)	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factor is set in a conservative manner for the Indonesian regional grids. The emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run resources for each regional grid in Indonesia during the year 2013-2015 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions. The conservative emission factor of each plant are calculated as $0.795 \text{ tCO}_2/\text{MWh}$ for coal-fired power plant and $0.320 \text{ tCO}_2/\text{MWh}$ for gas-fired power plant based on the survey on heat efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated as $0.533 \text{ tCO}_2/\text{MWh}$ based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the PV system(s) in a proposed project activity is directly connected or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid (PV Case 1), the value of operating margin including LCMR resources,

calculated using the best heat efficiency among currently operational plants in Indonesia for the emission factors of fossil fuel power plants, are applied. The emission factors to be applied are shown in column "Emission factor for PV Case 1 (tCO_2/MWh)" of Table 1 of the additional information.

In case the PV system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional, and an isolated grid and/or a captive power generator (PV Case 2), the lower values between emission factors shown in column "Emission factor for PV Case 1 (tCO_2/MWh)" of Table 1 of the additional information and the conservative emission factors of diesel-fired power plant of 0.533 tCO_2/MWh is applied. The emission factors to be applied are shown in column "Emission factor for PV Case 2 (tCO_2/MWh)" of Table 1 of the additional information.

In the case that the PV system(s) in a proposed project activity is only connected to an internal grid connecting to an isolated grid and/or a captive power generator (PV Case 3), the emission factor of a diesel generator calculated by applying a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel generator is applied, which is set as 0.533 tCO₂/MWh.

The result of calculation for emission factors to be applied for each case is shown in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} (EG_{i,p} \times EF_{RE,i})$$

 RE_p : Reference emissions during the period p [tCO₂/p]

- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]
- $EF_{RE,i}$: Reference CO₂ emission factor for the project solar PV system *i* [tCO₂/MWh]

G. Calculation of project emissions

 $PE_p = 0$

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

 $\mathbf{ER}_{p}=\mathbf{RE}_{p}$ - \mathbf{PE}_{p} $= RE_p$: Emission reductions during the period p [tCO₂/p] ER_p RE_p

: Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of d	ata	Source
EF _{RE, i}	iReference CO_2 emission factor for the project solar PV system <i>i</i> .The value for $EF_{RE,i}$ is selected from the emission		Additional information
			The default emission factor
			value is obtained from a
			study of electricity systems
	factor based on the national/regi	factor based on the national/regional grid $(EF_{RE,grid})$	
	or based on isolated grid and/or a captive diesel power generator ($EF_{RE,cap}$) in the following manner:		in Indonesia and the most
			efficient diesel power
		-	generator (a default value
	In case the PV system(s) in a	a proposed project	of 49% heat efficiency is
	activity is directly connected, o	r connected via an	above the value of the
	internal grid not connecting to	either an isolated	world's leading diesel
	grid or a captive power	generator, to a	generator). The default
	national/regional grid (PV Case	0	value is revised if deemed
	follows:	1), EI RE, grid 15 Set us	
	ionows.		necessary by the JC.
	Jamali grid	0.616 tCO ₂ /MWh	
	Sumatra grid	$0.477 \text{ tCO}_2/\text{MWh}$	
	Batam grid Taniung Dinang, Taniung Balai	0.664 tCO ₂ /MWh 0.555 tCO ₂ /MWh	
	Tanjung Pinang, Tanjung Balai Karimun, Tanjung Batu,	$0.555 \text{ ICO}_2/\text{MWII}$	
	Kelong, Ladan, Letung, Midai,		
	P Buru, Ranai, Sedanau,		
	Serasan, and Tarempa grids		
	Bangka, Belitung, S Nasik,	0.553 tCO ₂ /MWh	
	and Seliu grids Khatulistiwa grid	$0.532 t CO_{\circ} MWh$	
	Barito grid	0.532 tCO ₂ /MWh 0.666 tCO ₂ /MWh	
	Mahakam grid	$0.527 \text{ tCO}_2/\text{MWh}$	
	Tarakan grid	$0.493 \text{ tCO}_2/\text{MWh}$	
	Sulutgo grid	$0.325 \text{ tCO}_2/\text{MWh}$	
	Sulselbar grid	0.320 tCO ₂ /MWh	
	Kendari, Bau Bau, Kolaka,	0.593 tCO ₂ /MWh	
	Lambuya, Wangi Wangi, and		
	Raha grids		
	Palu Parigi grid	0.517 tCO ₂ /MWh	
	Lombok, Bima, and Sumbawa	0.561 tCO ₂ /MWh	
	grids Kunana Enda Maumara and	0.507 tCO ₂ /MWh	
	Kupang, Ende, Maumere, and Waingapu grids	$0.307 \text{ ICO}_2/\text{MWII}$	
	Ambon, Tual, and Namlea	0.533 tCO ₂ /MWh	
	grids	2	
	Tobelo and Ternate Tidore	0.532 tCO ₂ /MWh	
	grids	0.502 (00. 0.000)	
	Jayapura, Timika, and Genyem grids	0.523 tCO ₂ /MWh	
	Sorong grid	0.525 tCO ₂ /MWh	

In case the PV system(s) in a proposed project		
activity is connected to an internal grid connecting		
to both a national/regional grid, and an isolated grid		
and/or a captive power generation	ator (PV Case 2),	
EF _{RE,grid} is set as follows:		
,8		
Jamali grid	0.533 tCO ₂ /MWh	
Sumatra grid	0.477 tCO2/MWh	
Batam grid	0.533 tCO ₂ /MWh	
Tanjung Pinang, Tanjung Balai	0.533 tCO ₂ /MWh	
Karimun, Tanjung Batu,		
Kelong, Ladan, Letung, Midai,		
P Buru, Ranai, Sedanau,		
Serasan, and Tarempa grids		
Bangka, Belitung, S Nasik, and	0.533 tCO ₂ /MWh	
Seliu grids		
Khatulistiwa grid	0.532 tCO ₂ /MWh	
Barito grid	0.533 tCO ₂ /MWh	
Mahakam grid	0.527 tCO ₂ /MWh	
Tarakan grid	0.493 tCO ₂ /MWh	
Sulutgo grid	0.325 tCO ₂ /MWh	
Sulselbar grid	0.320 tCO ₂ /MWh	
Kendari, Bau Bau, Kolaka,	0.533 tCO ₂ /MWh	
Lambuya, Wangi Wangi, and Raha grids		
Palu Parigi grid	0.517 tCO ₂ /MWh	
Lombok, Bima, and Sumbawa	$0.533 \text{ tCO}_2/\text{MWh}$	
grids	0.555 100 / 101 01	
Kupang, Ende, Maumere, and	0.507 tCO2/MWh	
Waingapu grids		
Ambon, Tual, and Namlea grids	0.533 tCO ₂ /MWh	
Tobelo and Ternate Tidore grids	0.532 tCO ₂ /MWh	
Jayapura, Timika, and Genyem	0.523 tCO ₂ /MWh	
grids Sorong grid	0.525 tCO ₂ /MWh	
	0.525 (CO ₂ / WI W II	
In case the PV system(s) in a	n proposed project	
activity is connected to an internal grid which is not		
connected to a national/regional grid, and only		
connected to an isolated grid and/or a captive power		
generator (PV Case 3), EF _{RE,cap} : 0.533 tCO ₂ /MWh		
is applied.		
connected to an isolated grid and generator (PV Case 3), $EF_{RE,cap}$	/or a captive power	

History of the document

Version	Date	Contents revised
01.0	04 December 2017	JC7, Annex 3
		Initial approval.