JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Ethiopia	
Name of the methodology proponents	Pacific Consultants Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable-/non-renewable	
Methodology applies	sources)	
Title of the proposed methodology, and	Introduction of Biomass Combined Heat and	
version number	Power Plant, Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
	Additional information to the Proposed	
	Methodology "Introduction of Biomass	
	Combined Heat and Power Plant"	
Date of completion	03/02/2017	

History of the proposed methodology

Version	Date	Contents revised
01.0	03/02/2017	First Edition

A. Title of the methodology

Introduction of Biomass Combined Heat and Power Plant, Version 01.0

B. Terms and definitions

Terms Definitions	
Biomass combined heat and	A biomass combined heat and power (CHP) plant consists of
power plant	a biomass boiler and a generator set (genset) which uses the
	heat produced by the biomass boiler to generate electricity.
ORC generator	An ORC (Organic Rankine Cycle) generator uses an organic
	fluid with a boiling point lower than water to drive a turbine
	to generate electricity.

C. Summary of the methodology

Items	Summary
GHG emission reduction	Displacement of fossil fuel consumed for heat production and
measures	electricity generation by installation and operation of a biomass
	CHP plant.
Calculation of reference	The reference emissions are the sum of the reference emissions
emissions	from heat production and electricity generation. The former is
	calculated by multiplying the net heat quantity provided to the
	heat loads from the biomass CHP plant by the inverse of the
	conservative boiler efficiency and emission factor of diesel. The
	latter is calculated by multiplying the quantity of electricity
	generated from the biomass CHP plant by: 1) the conservative
	ratio of time when captive gensets are in use and conservative
	emission factor of captive gensets, in case the project site is
	connected to the national grid; or 2) the conservative emission
	factor of captive gensets, in case the project site is not connected
	to the national grid.
Calculation of project	The project emissions are assumed to be zero.
emissions	

Monitoring parameters	The quantity of net heat provided to the heat loads and	
	electricity generated by the biomass CHP plant.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs a biomass CHP plant consisted of a biomass boiler and an
	ORC genset.
Criterion 2	The electricity generated from the biomass CHP plant is not fed into the national
	grid.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Production of heat using fossil fuel	CO_2	
Generation of electricity using fossil fuel as power source	CO_2	
Project emissions		
Emission sources	GHG types	
Generation of heat and electricity from biomass CHP plant.	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

a) Reference emissions from heat generation

In Ethiopia, the common source of energy for boilers used in industries is diesel.

The efficiency of the latest fossil fuel-fired steam boilers is around 90%. The efficiency of the modern fossil fuel-fired thermal oil boilers can be as high as 93%. Normally, the actual efficiency during operation will be lower than these maximum figures as the boilers sometimes run under partial loads.

In order to achieve net emission reductions, it is assumed that the heat provided to the heat loads from the biomass CHP plant displaces heat produced by a diesel-fired boiler running

constantly at an efficiency of 93%.

b) Reference emissions from electricity generation

b-1) In case the project site is connected to the national grid

The power source of the national grid of Ethiopia is almost 100% renewable. However, power interruption is very common and industries requiring continuous operation resort to captive diesel power generation.

It is assumed that 2% of the electricity generated from the biomass CHP plant displaces electricity generated by a captive diesel genset using the most efficient diesel power generator in the world, and the balance displaces grid electricity, which is assumed to have an emission factor of zero. The value 2% corresponds to the percentage of time power was interrupted in the year which had the shortest average annual time of power interruption during the June 2013 to May 2016 period.

The most efficient diesel generator in the world has a generation efficiency close to 49%. The reference emission factor of captive gensets is set to 0.533 tCO₂/MWh, which is derived from a generation efficiency of 49%. This ensures net emission reductions because the default value for both the annual time of power interruption and emission factor of captive gensets is set in a conservative manner.

b-2) In case the project site is not connected to the national grid

It is assumed that all of the electricity generated from the biomass CHP plant displaces electricity generated by a captive diesel genset using the most efficient diesel power generator in the world. The same above-mentioned reference emission factor of 0.533 tCO₂/MWh is applied to achieve net emission reductions.

F.2. Calculation of reference emissions

 $RE_p = RE_{th,p} + RE_{el,p}$

RE_p : Reference emissions during period *p* [tCO₂/p]
RE_{th,p} : Reference emissions from heat generation during period *p* [tCO₂/p]
RE_{el,p} : Reference emissions from electricity generation during period *p* [tCO₂/p]

$$\text{RE}_{\text{th,p}} = \sum_{i} \text{HP}_{i,p} \, / \, \eta \times \text{EF}_{\text{th}}$$

 $RE_{th,p}$: Reference emissions from heat generation during period p [tCO₂/p]

HP_{i,p} : Net heat quantity provided to heat load *i* by project biomass CHP plant during period p [TJ/p]

 η : Reference boiler efficiency [%]

 EF_{th} : Reference CO₂ emission factor of reference fuel [tCO₂/TJ]

For calculation of reference emissions from electricity generation, either Option 1 or Option 2 is selected.

Option 1: In case the project site is connected to the national grid.

 $RE_{el,p} = EG_p \times PI \times EF_{el}$

 $RE_{el,p}$: Reference emissions from electricity generation during period p [tCO₂/p]

EG_p : Quantity of electricity generated by project biomass CHP plant during period *p* [MWh/p]

PI : Reference percentage of grid power interruption time [%]

 EF_{el} : Reference CO₂ emission factor of captive gensets [tCO₂/MWh]

Option2: In case the project site is not connected to the national grid

 $RE_{el,p} = EG_p \times EF_{el}$

 $RE_{el,p}$: Reference emissions from electricity generation during period p [tCO₂/p]

- EG_p : Quantity of electricity generated by project biomass CHP plant during period *p* [MWh/p]
- EF_{el} : Reference CO₂ emission factor of captive gensets [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = 0$$

 PE_p : Project emissions during period p [tCO₂/p]

H. Calculation of emissions reductions

 $ER_{p} = RE_{p} - PE_{p}$ $= RE_{p}$ $ER_{p} : Emission redu$

 ER_p : Emission reductions during period p [tCO₂/p]

 RE_p : Reference emissions during period p [tCO₂/p]

 PE_p : Project emissions during period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
η	The reference boiler efficiency: set to 93%	Additional information.
	referring to the maximum efficiency of the	The default boiler efficiency is
	modern fossil fuel-fired thermal oil boilers.	derived from the website
		survey on the modern fossil
		fuel-fired thermal oil boilers.
		The default value is revised if
		deemed necessary by the JC.
EF _{th}	The reference CO ₂ emission factor of the	The default emission factor of
	reference fuel: set to 74.1 tCO ₂ /TJ identifying	diesel oil for stationary
	diesel as the reference fuel.	combustion in energy industries
		in the "2006 IPCC Guidelines
		for National Greenhouse Gas
		Inventory."
PI	The reference percentage of grid power	Additional information.
	interruption time, derived from survey: the	The default reference
	default value of 2% is applied.	percentage of grid power
		interruption time is derived
		from the analyses of
		information on the power
		interruption in Ethiopia. The
		default value is revised if
		deemed necessary by the JC.

$\mathrm{EF}_{\mathrm{el}}$	The reference CO ₂ emission factor of captive	Additional information.
	gensets, calculated based on the power	The default emission factor
	generation efficiency of 49% using diesel fuel	is derived from the result of
	as the power source: the default value 0.533	the survey on the new
	tCO ₂ /MWh is applied.	high-efficient engines using
		diesel fuel as power source.
		The default value is revised if
		deemed necessary by the JC.