JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Ethiopia	
Name of the methodology proponents	NTT DATA INSTITUTE OF MANAGEMENT	
submitting this form	CONSULTING, Inc.	
Sectoral scope(s) to which the Proposed	1. Energy industries	
Methodology applies		
Title of the proposed methodology, and	Electrification by photovoltaic power generation	
version number	in Ethiopia, ver01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	20/12/2016	

History of the proposed methodology

Version	Date	Contents revised
1.0	20/12/2016	Initial Edition

A. Title of the methodology

Electrification by photovoltaic power generation in Ethiopia, ver01.0

B. Terms and definitions

Terms	Definitions
Photovoltaic power generation system (PV)	Photovoltaic power generation system employed by the project is comprised of photovoltaic modules, which convert sunlight into electricity, and inverters which change the electrical current from direct current (DC) to alternating current (AC).
Recipient	The household and/or facility that receive and consume the electricity generated by the project activity, e.g. households, public buildings, small office or production facility.

C. Summary of the methodology

Items Summary		
GHG emission reduction	Displacement of electricity using diesel fuel and/or lighting	
measures	using kerosene by installation and operation of the PV.	
Calculation of reference	Reference emissions are calculated on the basis of the	
emissions	consumption of electricity generated by the PV multiplied by	
	emission factor of diesel or kerosene.	
Calculation of project	The project does not assume any project emissions.	
emissions		
Monitoring parameters ✓ The actual amount of electricity consumed by a		
recipients (Calculation method 1).		
	\checkmark The actual amount of electricity consumed by each recipient	
	(Calculation method 2).	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs the PV^1 to supply electricity for recipients, who are	
	not connected to national grid and who have not used renewable electricity until	
	the earliest date of construction for the project.	
Criterion 2	The total capacity of PV installed by the project is less than 135 kW. ²	
Criterion 3	The PV modules are certified for design qualifications (IEC61215, IEC 61646 or	
	IEC 62108) and safety qualification (IEC 61730-1 and IEC61730-2).	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fuel consumption by kerosene lamps	CO ₂	
Fuel consumption by electricity generation	CO ₂	
Project emissions		
Emission sources	GHG types	
Generation of electricity from PV	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The project is executed in the off-grid area. Therefore, the reference scenario assumes the emissions due to electricity supplied by diesel generation unit or kerosene lamps.

In order to achieve net emission reductions, the reference emissions are calculated based upon the conservatively selected emission factors for diesel generation unit based on Table 2 in CDM approved small scale methodology, AMS-I.F by applying the lowest value within the next higher capacity range of diesel generators to that of the project generation systems. Accordingly, in the case of $x_p < 35$ (x_p : the total capacity of the project generation systems [kW]²), the emission factor of 1.0 [tCO₂/MWh] is applied, which is the lowest value within the

¹This methodology is also applicable to a project which newly installs the PV together with the "micro hydro generation unit" defined by the latest version of ET_AM001, "Electrification of communities using Micro hydropower generation".

²In the case mentioned in footnote 1, the total capacity of the project is determined as a summation with the capacity of the unit(s) installed as "micro hydro generation unit" defined by ET_AM001.

range of $35 \le x_d < 135$ (x_d : the capacity of the diesel generator systems [kW]) in the table. In the case of $35 \le x_p < 135$, the emission factor 0.8 [tCO₂/MWh] is applied, which is the lowest value within the range of $135 \le x_d < 200$.

F.2. Calculation of reference emissions

If electricity consumption of each recipient is monitored, the *Calculation method 2* can be applied as necessary. If each is not monitored, the *Calculation method 1* is applied.

Calculation method 1

$$RE_p = EC_{total,p} \times EF_{CO2}$$

Where:

RE_p	Reference emissions during the period p [tCO ₂ /p]	
$EC_{total,p}$	Total electricity consumption by all the recipients during the period p	
	$[MWh/p]^3$	
EF_{CO2}	CO ₂ emission factor of the diesel generation unit [tCO ₂ /MWh]	

Calculation method 2

$$RE_{p} = \sum_{i=1}^{M_{p}} RE_{i,p}$$

$$v_{b} = (v_{y} / 365) \times p$$

$$(\cdot In case of EC_{i,p} \le v_{b}$$

$$RE_{i,p} = EC_{i,p} \times EF_{CO2,FUEL}$$

$$\cdot In case of EC_{i,p} > v_{b}$$

$$RE_{i,p} = v_{b} \times EF_{CO2,FUEL} + (EC_{i,p} - v_{b}) \times EF_{CO2}$$
Where:

³In the case mentioned in footnote 1, these electricity consumptions include the electricity supplied by "micro hydro generation unit" defined by the ET_AM001, and the consumed electricity generated by the PV and the "micro hydro generation unit" can be monitored collectively.

RE_p	Reference emissions during the period p [tCO ₂ /p]	
р	The period of the monitoring [day]	
$RE_{i,p}$	Reference emissions of the recipient <i>i</i> during the period <i>p</i> [tCO ₂ /p]	
M_{p}	The number of the recipients in the project activity during the period p	
v _b	The threshold of the electricity consumption for the recipient <i>i</i> during the	
	period p [MWh], accounted as displacement of kerosene lamps.	
v _y	The minimum electricity consumption for lighting per recipient per year	
у	[MWh], the default value is 0.055 [MWh].	
$EC_{i,p}$	Electricity consumption of the recipient <i>i</i> during the period $p [MWh/p]^3$	
EF _{CO2,FUEL}	CO ₂ emission factor of the lighting by kerosene lamps [tCO ₂ /MWh]	

G. Calculation of project emissions

There are no project emissions.

$$PE_p = 0$$

Where:
 PE_p Project emission

Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and
project emissions, as follows.
$ER_p = RE_p - PE_p$
Where:

ER_p	Emission reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]
PE_p	Project emissions during the period p [tCO ₂ /p]

I.	Data and parameters fixed <i>ex ante</i>	
The source of each data and parameter fixed ex ante is listed as below.		

Parameter	Description of data	Source
EF _{CO2}	CO ₂ emission factor of the diesel generation	Refer to the available value in
	unit [tCO ₂ /MWh]	"Table 2. Emission factors for

		diesel generator systems (in
	In the case of $x_p < 35$ (x_p : the total capacity	$[kg CO_2 e/kWh])$ for three
	of the project generation systems [kW] ²),	different levels of load
	the emission factor of 1.0 [tCO ₂ /MWh] is	factors" of CDM approved
	applied. In the case of 35 $\leq x_p < 135$, the	small scale methodology
	emission factor 0.8 [tCO ₂ / MWh] is applied.	AMS-I.F.
		This parameter is determined
		at the time of validation in
		accordance with the latest
		version of the above source.
$EF_{CO2,FUEL}$	CO ₂ emission factor of the lighting by	Refer to the available value of
	kerosene lamps [tCO ₂ /MWh]	the CDM Methodology,
		AMS-I.L. "Electrification of
	Default value: 6.8 [tCO ₂ /MWh]	rural communities using
		renewable energy".
		This parameter is determined
		at the time of validation in
		accordance with the latest
		version of the above source.
v _y	The minimum electricity consumption for	Refer to the available value in
, ,	lighting per recipient per year [MWh]	the CDM Methodology,
	(Two 15W CFLs which are equivalent to	AMS-I.L "Electrification of
	kerosene lamp run for 5 [hrs/day] for 365	rural communities using
	days consuming 0.055 [MWh])	renewable energy".
		This parameter is determined
	Default value: 0.055 [MWh]	at the time of validation in
		accordance with the latest
		version of the above source.