JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Costa Rica		
Name of the methodology proponents	NTT DATA INSTITUTE OF MANAGEMENT		
submitting this form	CONSULTING, INC.		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Energy Saving by Introduction of High		
version number	Efficiency Centrifugal Chiller, Version 1.0		
List of documents to be attached to this form			
(please check):	⊠Additional information		
Date of completion	1/09/2017		

History of the proposed methodology

Version	Date	Contents revised
1.0	1/09/2017	First edition

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller, Version 1.0

B. Terms and definitions

Terms	Definitions	
Centrifugal chiller	A centrifugal chiller is a chiller equipped with a centrifugal compressor.	
	It is commonly used for air-conditioning with huge cooling load, e.g.,	
	buildings, shopping malls or factories etc.	
Cooling capacity	Cooling capacity is the ability of individual chiller to remove heat. In	
	this methodology, "cooling capacity" is used to represent a cooling	
	capacity per one chiller unit and not for a system with multiple chiller	
	units.	
Periodical check	Periodical check is a periodical investigation of chiller done by	
	manufacturer or agent who is authorized by the manufacturer, in order to	
	maintain chiller performance.	
IPLV (Integrated	IPLV is a performance indicator of chillers described as a weighted	
Part Load Value)	average of the energy efficiency ratio (EER [kW/kW]) under four	
	different part loads and it is defined in the standard "AHRI Standard	
	550/590(I-P)" or "AHRI Standard 551/591(SI)" by the Air-Conditioning,	
	Heating, and Refrigeration Institute (AHRI) of the United States.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Saving energy by introducing high efficiency centrifugal chiller	
measures	for the target factory, hotel, and commerce facilities etc. in	
	Costa Rica.	
Calculation of reference	GHG emissions from using reference chiller, calculated with	
emissions	power consumption of project chiller, ratio of IPLVs of	
	reference/project chillers and CO ₂ emission factor for electricity	
	consumed.	

Calculation of project	GHG emissions from using project chiller, calculated with			
emissions	power consumption of project chiller and CO ₂ emission factor			
	for electricity consumed.			
Monitoring parameters	Power consumption of project chiller			
	Electricity imported from the grid, where applicable			
	Operating time of captive electricity generator, where			
	applicable			
	• The amount of fuel consumed and/or the amount of			
	electricity generated by captive power, where applicable.			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project chiller is an inverter type centrifugal chiller with a capacity greater than						
	or equal to 165USRt but less than 3500USRt.						
	Note: 1	USRt = 3.52 kW					
Criterion 2	IPLV fo	or project chiller i certified	by AHRI is more	e than the thresho	ld IPLV		
	values s	et in the table below. ("x"	in the table repre	sents cooling capa	acity per		
	unit.)						
		Cooling capacity per unit [USRt] 165\(\sigma x < 2000\) 2000\(\sigma x < 3500\)					
		Threshold IPLV value	8.04	9.60			
Criterion 3	Periodical check is planned more than one (1) time annually.						
Criterion 4	Ozone 1	Depletion Potential (ODP) of	of the refrigerant	used for project of	chiller is		
	zero.						
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared.						
	In the case of replacing the existing chiller with the project chiller, a plan for						
	preventi	on of releasing refrigerant	used in the existi	ing chiller to the	air (e.g.		
	re-use o	of the equipment) is prepare	d. Execution of t	his plan is checke	ed at the		
	time of	verification, in order to confi	irm that refrigeran	t used for the exis	ting one		
	replaced	by the project is prevented f	from being release	d to the air.			

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Power consumption by reference chiller	CO ₂		
Project emissions			
Emission sources	GHG types		
Power consumption by project chiller	CO_2		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of IPLVs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The IPLV of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference IPLV value varies by its cooling capacity.
- 2. The maximum values of IPLV in each cooling capacity range set for this methodology are defined as $IPLV_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \bigl\{ EC_{PJ,i,p} \times \bigl(IPLV_{PJ,i} \div IPLV_{RE,i} \bigr) \times EF_{elec} \bigr\}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

IPLV_{PLi}: IPLV of project chiller *i* certified by AHRI [-]

IPLV_{RE.i}: IPLV of reference chiller *i* certified by AHRI [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i \bigl(EC_{PJ,i,p} \times EF_{elec}\bigr)$$

 PE_n : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $EF_{elec} \quad : CO_2 \ emission \ factor \ for \ consumed \ electricity \ [tCO_2/MWh]$

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 $\operatorname{ER}_{\operatorname{p}}$: Emission reductions during the period p [tCO₂/p] $\operatorname{RE}_{\operatorname{p}}$: Reference emissions during the period p [tCO₂/p] $\operatorname{PE}_{\operatorname{p}}$: Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity. When project chiller consumes only grid electricity or captive electricity, the project participant applies the CO ₂ emission factor respectively. When project chiller may consume both grid electricity and captive electricity, the project participant applies the CO ₂ emission factor for grid and captive electricity proportionately. Proportion of captive electricity is derived from dividing captive electricity generated by total electricity consumed at the project site. The total electricity consumed is a summation of grid electricity imported ($EI_{grid,p}$) and captive electricity generated ($EG_{gen,p}$)* during the monitoring period.	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Factores de emisión de gases efecto invernadero", Instituto Meteorológico Nacional unless otherwise instructed by the Joint Committee.
	* Captive electricity generated can be derived from metering electricity generated or multiplying monitored operating time $(h_{gen,p})$ by rated capacity of generator (RC_{gen}) .	[Captive electricity] For the option a) Specification of the captive power generation system

Parameter	Description of data	Source
	[CO ₂ emission factor] For grid electricity: The most recent value available from the source stated in this table at the time of validation For captive electricity, it is determined based on the	provided by the manufacturer (η_{elec} [%]). CO ₂ emission factor of the fossil fuel type used in the captive power generation
	following options:	system (EF _{fuel} [tCO ₂ /GJ])
	 a) Calculated from its power generation efficiency (η_{elec} [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation 	For the option b) Generated and supplied electricity by the captive power generation system
	system from the manufacturer's specification is applied;	(EG _{PJ,p} [MWh/p]). Fuel amount consumed by the
	$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	captive power generation system $(FC_{PJ,p} \text{ [mass or weight/p]}).$
	b) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power	Net calorific value (NCV _{fuel} [GJ/mass or weight]) and CO ₂ emission factor of
	generation $(FC_{PJ,p})$ and the amount of electricity generated $(EG_{PJ,p})$ during the monitoring period p is applied. The measurement is conducted with the	the fuel (EF _{fuel} [tCO ₂ /GJ]) in order of preference: 1) values provided
	monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards; $EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$	by the fuel supplier; 2) measurement by the project participants; 3) regional or
	Where:	national default values;
	NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]	4) IPCC default values provided in tables 1.2 and 1.4 of
	Note: In case the captive electricity generation system meets	Ch.1 Vol.2 of 2006 IPCC Guidelines on
	all of the following conditions, the value in the following table may be applied to $\mathrm{EF}_{\mathrm{elec}}$ depending	National GHG Inventories. Lower

Parameter	Description of data				Source	
	on the consumed fuel type.				value is applied.	
	 The system is non-renewable generation system Electricity generation capacity of the system is less than or equal to 15 MW 				[Captive electricity with diesel fuel] CDM approved small scale methodology:	
	fuel type	Diesel fuel	Natural gas		AMS-I.A.	
	EF _{elec}	0.8 *1	0.46 *2		[Captive electricity	
	44.55				with natural gas]	
	*1 The most recent v	alue at the ti	me of validati	on is	2006 IPCC	
	applied. *2 The value is ca	loulated with	the equation	n in the	Guidelines on	
	option a) above. Th		•		National GHG Inventories for the	
	CO ₂ emission factor				source of EF of	
	and the most efficie		•		natural gas.	
	off-grid gas turbine s			•	CDM	
				Methodological tool		
					"Determining the	
					baseline efficiency of	
					thermal or electric	
					energy generation	
					systems version02.0"	
					for the default	
					efficiency for off-grid power	
					plants.	
IPLV _{RE,i}	The IPLV of the refe	erence chiller	<i>i</i> is selected t	from the	The default IPLV	
KE,i	default IPLV value				value is derived from	
	cooling capacity of the project chiller <i>i</i> .			the result of survey		
	("x" in the table represents cooling capacity per unit.)			on IPLV of chillers		
				from manufacturers		
					that has high market	
	Cooling capacity per unit [USRt]	165≤x<2	000 2000≤2	x<3500	share. The survey	
	per unit [OSKt]			should prove the use		
					of clear	

Parameter	Description of data			Source		
	Reference	8.04	9.60	methodol	ogy. 7	Гһе
	IPLV value			$IPLV_{RE,i}$	should	be
		revised i	f necess	ary		
				from su	rvey res	sult
			which is	conduc	ted	
		by JC	or proj	ject		
				participar	nts.	
$IPLV_{PJ,i}$	The IPLV of project chiller <i>i</i> certified in accordance			Specifica	tions	of
	with the AHRI certification program of Water-Cooled			project cl	hiller i fr	om
	Water Chilling Packages Using Vapor Compression			catalogue	or prepa	red
	Cycle, which is based on AHRI Standard 550/590 (I-P)			for the o	quotation	or
	and AHRI Standard 55	1/591 (SI).		factory	acceptar	nce
				test	data	by
				manufact	urer	