Joint Crediting Mechanism Approved Methodology CR_AM002 "Energy Saving by Introduction of High Efficiency Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller, Version 1.0

B. Terms and definitions

Terms	Definitions		
Centrifugal chiller	A centrifugal chiller is a chiller equipped with a centrifugal compressor.		
	It is commonly used for air-conditioning with huge cooling load, e.g.,		
	buildings, shopping malls or factories etc.		
Cooling capacity	Cooling capacity is the ability of individual chiller to remove heat. In		
	this methodology, "cooling capacity" is used to represent a cooling		
	capacity per one chiller unit and not for a system with multiple chiller		
	units.		
Periodical check	Periodical check is a periodical investigation of chiller done by		
	manufacturer or agent who is authorized by the manufacturer, in order to		
	maintain chiller performance.		
IPLV (Integrated	IPLV is a performance indicator of chillers described as a weighted		
Part Load Value)	average of the energy efficiency ratio (EER [kW/kW]) under four		
	different part loads and it is defined in the standard "AHRI Standard		
	550/590(I-P)" or "AHRI Standard 551/591(SI)" by the Air-Conditioning,		
	Heating, and Refrigeration Institute (AHRI) of the United States.		

C. Summary of the methodology

Items	Summary		
GHG emission reduction	Saving energy by introducing high efficiency centrifugal chiller		
<i>measures</i> for the target factory, hotel, and commerce facilities etc. in			
	Costa Rica.		
Calculation of reference	GHG emissions from using reference chiller, calculated with		
emissions	power consumption of project chiller, ratio of IPLVs of		

	reference/project chillers and CO ₂ emission factor for electricity		
	consumed.		
Calculation of project	GHG emissions from using project chiller, calculated with		
emissions	power consumption of project chiller and CO ₂ emission factor		
	for electricity consumed.		
Monitoring parameters	• Power consumption of project chiller		
	• Electricity imported from the grid, where applicable		
	• Operating time of captive electricity generator, where		
	applicable		
	• The amount of fuel consumed and/or the amount of		
	electricity generated by captive power, where applicable.		

D. Eligibility criteria					
This methodol	This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	Project of	chiller is an inverter type cer	ntrifugal chiller w	ith a capacity grea	ater than
	or equal	to 165USRt but less than 35	00USRt.		
	Note : 1	USRt = 3.52 kW			
Criterion 2	IPLV fo	r project chiller <i>i</i> certified	by AHRI is more	e than the thresho	ld IPLV
	values s	et in the table below. ("x"	in the table repre-	sents cooling capa	acity per
	unit.)				
					_
		Cooling capacity per unit [USRt]	165≤x<2000	2000≤x<3500	
		Threshold IPLV value	8.04	9.60	
Criterion 3	Periodical check is planned more than one (1) time annually.				
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is				
	zero.				
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared.				
	In the case of replacing the existing chiller with the project chiller, a plan for				
	prevention of releasing refrigerant used in the existing chiller to the air (e.g.				
	re-use of the equipment) is prepared. Execution of this plan is checked at the				
	time of	verification, in order to confi	irm that refrigeran	t used for the exis	ting one
	replaced	by the project is prevented f	rom being release	d to the air.	

E. Emission Sources and GHG types

Reference emissions			
Emission sources GHG types			
Power consumption by reference chiller	CO ₂		
Project emissions			
Emission sources GHG types			
Power consumption by project chiller	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of IPLVs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The IPLV of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

1. The reference IPLV value varies by its cooling capacity.

2. The maximum values of IPLV in each cooling capacity range set for this methodology are defined as $IPLV_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times \left(IPLV_{PJ,i} \div IPLV_{RE,i} \right) \times EF_{elec} \}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

IPLV_{PJ,i}: IPLV of project chiller *i* certified by AHRI [-]

IPLV_{RE,i} : IPLV of reference chiller *i* certified by AHRI [-]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 $\begin{array}{ll} \mbox{PE}_{\rm p} & : \mbox{Project emissions during the period } p \ [tCO_2/p] \\ \mbox{EC}_{\rm PJ,i,p} & : \mbox{Power consumption of project chiller } i \ during the period } p \ [MWh/p] \\ \mbox{EF}_{\rm elec} & : \mbox{CO}_2 \ {\rm emission factor for consumed electricity } \ [tCO_2/MWh] \end{array}$

H. Calculation of emissions reductions

	$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$
ER_p	: Emission reductions during the period p [tCO ₂ /p]
REp	: Reference emissions during the period p [tCO ₂ /p]
PEp	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity. When project chiller consumes only grid electricity or captive electricity, the project participant applies the CO ₂ emission factor respectively. When project chiller may consume both grid electricity and captive electricity, the project participant applies the CO ₂ emission factor for grid and captive electricity proportion at the project is derived from dividing captive electricity generated by total electricity consumed at the project site. The total electricity consumed is a summation of grid electricity imported ($EI_{grid,p}$) and captive electricity generated ($EG_{gen,p}$)* during the monitoring period.	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Factores de emisión de gases efecto invernadero", Instituto Meteorológico Nacional unless otherwise instructed by the Joint Committee.
	* Captive electricity generated can be derived from metering electricity generated or multiplying monitored operating time $(h_{gen,p})$ by rated capacity of generator (RC_{gen}) .	[Captive electricity] For the option a) Specification of the captive power

Parameter	Description of data	Source
	[CO ₂ emission factor] For grid electricity: The most recent value available from the source stated in this table at the time of validation For captive electricity, it is determined based on the following options:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	a) Calculated from its power generation efficiency (η_{elec} [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied; $EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$ <u>b) Calculated from measured data</u> The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. The measurement is conducted with the	For the option b) Generated and supplied electricity by the captive power generation system $(EG_{PJ,p} [MWh/p])$. Fuel amount consumed by the captive power generation system $(FC_{PJ,p}$ [mass or volume/p]). Net calorific value $(NCV_{fuel} [GJ/mass or volume]) and CO2 emission factor of the fuel (EF_{fuel}[tCO_2/GJ]) in orderof preference:1) values provided$
	applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards; $EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$ Where: NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or volume] Note: In case the captive electricity generation system meets all of the following conditions, the value in the	 values provided by the fuel supplier; measurement by the project participants; regional or national default values; IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG

Parameter	Description of data				Source
	following table may be applied to EF _{elec} depending			Inventories. Lower	
	on the consumed fuel type.				value is applied.
	• The system is n	on-renewabl	e generation syst	em	[Captive electricity
	• Electricity gene	ration capaci	ty of the system	is	with diesel fuel]
	less than or equ	al to 15 MW			CDM approved small
			1	-	scale methodology:
	fuel type	Diesel fuel	Natural gas		AMS-I.A.
	EF _{elec}	0.8 *1	0.46 *2		[Captive electricity
					with natural gas]
	*1 The most recent v	alue at the ti	me of validation	is	2006 IPCC
	applied.				Guidelines on
	*2 The value is ca	lculated wit	h the equation	in the	National GHG
	option a) above. Th	e lower valu	ue of default eff	ective	Inventories for the
	CO ₂ emission factor for natural gas (0.0543tCO ₂ /GJ),			2/GJ),	source of EF of
	and the most efficient value of default efficiency for			cy for	natural gas.
	off-grid gas turbine systems (42%) are applied.				CDM
					Methodological tool
					"Determining the
					baseline efficiency of
					thermal or electric
					energy generation
					systems version02.0"
					for the default
					efficiency for
					off-grid power
IPLV _{RE,i}	The IPLV of the refe	rance shills	r i is calacted fro	m tha	plants. The default IPLV
II LVRE,i	default IPLV of the refe				value is derived from
	cooling capacity of t		-	~ vv 1111	the result of survey
	("x" in the table repr	1 5		nit)	on IPLV of chillers
	(A in the table repr	counts coom	is supurity per u		from manufacturers
					that has high market
	Cooling capacity			2500	share. The survey
	per unit [USRt]	165≤x<2	2000 2000≤x<.	3500	should prove the use

Parameter	Description of data			Source	
	Reference IPLV value	8.04	9.60		ear The
				$IPLV_{RE,i} should$ revised if necess	be
				from survey res	Ţ
				which is conduc	ted
				by JC or proj	ect
				participants.	
IPLV _{PJ,i}	The IPLV of project	chiller <i>i</i> certifie	d in accordance	Specifications	of
	with the AHRI certification program of Water-Cooled project chiller <i>i</i> from			om	
	Water Chilling Packages Using Vapor Compression catalogue or prepared			red	
	Cycle, which is based	on AHRI Standa	rd 550/590 (I-P)	for the quotation	or
	and AHRI Standard 55	1/591 (SI).		factory acceptar	nce
				test data	by
				manufacturer	

History of the document

Version	Date	Contents revised
01.0	12 March 2018	Electronic decision by the Joint Committee Initial approval.