Joint Crediting Mechanism Approved Methodology BD_AM001 "Energy Saving by Introduction of High Efficiency Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller, Version 2.0

B. Terms and definitions

Terms	Definitions		
Centrifugal chiller	A centrifugal chiller is a chiller applying a centrifugal		
	compressor. It is commonly used for air-conditioning with		
	huge cooling load, e.g., buildings, shopping malls or factories		
	etc.		
Cooling capacity	Cooling capacity is the ability of individual chiller to remove		
	heat. In this methodology, "cooling capacity" is used to		
	represent a cooling capacity per one chiller unit and not for a		
	system with multiple chiller units.		
Periodical check	Periodical check is a periodical investigation of chiller done		
	by manufacturer or agent who is authorized by the		
	manufacturer, in order to maintain chiller performance.		

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology applies to the project that aims for saving
measures	energy by introducing high efficiency centrifugal chiller for the
	target factory, commerce facilities etc. in Bangladesh.
Calculation of reference	<i>e</i> Reference emissions are GHG emissions from using reference
emissions	chiller, calculated with power consumption of project chiller,
	ratio of COPs (Coefficient Of Performance) of reference/project
	chillers and CO ₂ emission factor for electricity consumed.
Calculation of proje	<i>t</i> Project emissions are GHG emissions from using project chiller,
emissions	calculated with power consumption of project chiller and CO ₂

	emission factor for electricity consumed.	
Monitoring parameter	• Power consumption of project chiller	
	• Amount of fuel consumed and amount of electricity	
	generated by captive power, where applicable.	

D. Eligibility criteria

This methodol	ogy is applicable t	o projects that satisfy all of the following criteria.	
Criterion 1	Project chiller is a centrifugal chiller with a capacity of less than 1,150 USRt.		
	* 1 USRt = 3.52 kW		
Criterion 2	COP for project	t chiller <i>i</i> calculated under the standardizing temperature	
	conditions* (COI	$P_{PJ,tc,i}$) is more than 6.0.	
	COP _{PJ,tc,i} is a re	ecalculation of COP of project chiller i (COP _{PJ,i}) adjusting	
	temperature cond	litions from the project specific condition to the standardizing	
	conditions. COP	PJ,i is derived in specifications prepared for the quotation or	
	factory acceptance	e test data at the time of shipment by manufacturer.	
	[equation to calcu	ilate COP _{PJ,tc,i}]	
	$COP_{PJ,tc,i} = COP$	$P_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{cooling})]$	
		$\div (37 - 7 + TD_{chilled} + TD_{cooling})]$	
	COP _{PJ,tc,i}	: COP of project chiller <i>i</i> calculated under the standardizing	
		temperature conditions* [-]	
	COP _{PJ,i}	: COP of project chiller <i>i</i> under the project specific	
		conditions [-]	
	T _{cooling-out,i}	: Output cooling water temperature of project chiller <i>i</i> set	
		under the project specific condition [degree Celsius]	
	T _{chilled-out,i}	: Output chilled water temperature of project chiller <i>i</i> set	
		under the project specific condition [degree Celsius]	
	TD _{cooling}	: Temperature difference between condensing temperature	
		of refrigerant and output cooling water temperature	
		1.5 degree Celsius set as a default value [degree Celsius]	
	TD _{chilled}	: Temperature difference between evaporating temperature	
		of refrigerant and output chilled water temperature,	
		1.5 degree Celsius set as a default value [degree Celsius]	
	*The ster derd -	as temporature conditions to coloritate COD	
	Chilled w	ater: 7 degree Celsius	

		input	12 degree Celsius
	Cooling water:	output	37 degree Celsius
		input	32 degree Celsius
Criterion 3	Periodical check is conducted	ed at leas	t twice a year.
Criterion 4	Ozone Depletion Potential	(ODP) o	of the refrigerant used for project chiller is
	zero.		
Criterion 5	A plan for not releasing refrigerant used for project chiller is prepared. In the		
	case of replacing the existin	g chiller	with the project chiller, a plan is prepared in
	which refrigerant used in the existing chiller is not released to the air e.g. re-use		
	of the refrigerant. Execution of the prevention plan is checked at the time of		
	verification, in order to confirm that refrigerant used for the existing one		
	replaced by the project is not released to the air.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference chiller	CO ₂	
Project emissions		
Emission sources	GHG types	
Power consumption by project chiller	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

1. The COP value tends to increase as the cooling capacity becomes larger.

2. The reference COP, which has a certain cooling capacity, is set at a maximum value in corresponding cooling capacity range.

3. The maximum values of COP in each cooling capacity ranges are defined as $\text{COP}_{\text{RE},i}$ as described in Section I.

F.2. Calculation of reference emissions

 $RE_{p} = \sum_{i} \{EC_{PJ,i,p} \times (COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec}\}$ $RE_{p} : \text{Reference emissions during the period } p [tCO_{2}/p]$ $EC_{PJ,i,p} : \text{Power consumption of project chiller } i \text{ during the period } p [MWh/p]$ $COP_{PJ,tc,i}: \text{COP of project chiller } i \text{ calculated under the standardizing temperature conditions}$ [-] $COP_{RE,i}: \text{COP of reference chiller } i \text{ under the standardizing temperature conditions } [-]$ $EF_{elec}: CO_{2} \text{ emission factor for consumed electricity } [tCO_{2}/MWh]$

G. Calculation of project emissions

$$PE_{p} = \sum_{i} \bigl(EC_{PJ,i,p} \times EF_{elec} \bigr)$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

	$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$
ER_p	: Emission reductions during the period p [tCO ₂ /p]
REp	: Reference emissions during the period p [tCO ₂ /p]
PEp	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$\mathrm{EF}_{\mathrm{elec}}$	CO ₂ emission factor for consumed electricity	[Grid electricity]
	[tCO ₂ /MWh].	The most recent value
		available at the time of
	When project chiller consumes only grid	validation is applied and fixed

electricity or captive electricity, the project	for the monitoring period
participant applies the CO2 emission factor	thereafter. The data is sourced
respectively.	from "Grid Emission Factor
When project chiller may consume both grid	(GEF) of Bangladesh",
electricity and captive electricity, the project	endorsed by National CDM
participant applies the CO2 emission factor	Committee unless otherwise
with lower value.	instructed by the Joint
	Committee.
[CO ₂ emission factor]	
For grid electricity: The most recent value	[Captive electricity]
available from the source stated in this table	For the option a)
at the time of validation	Specification of the captive
	power generation system
For captive electricity including	provided by the manufacturer
cogeneration system, it is determined based	$(\eta_{elec} [\%]).$
on the following options:	CO ₂ emission factor of the
	fossil fuel type used in the
	captive power generation
a) Calculated from its power generation	system (EF _{fuel} [tCO ₂ /GJ])
efficiency (η_{elec} [%]) obtained from	
manufacturer's specification	For the option b)
The power generation efficiency based on	Generated and supplied
lower heating value (LHV) of the captive	electricity by the captive
power generation system from the	power generation system
manufacturer's specification is applied;	$(EG_{PJ,p} [MWh/p]).$
$EE \qquad 26 \lor 100 \lor EE$	Fuel amount consumed by the
$Er_{elec} = 3.0 \times \frac{1}{\eta_{elec}} \times Er_{fuel}$	captive power generation
	system (FC _{PJ,p} [mass or
b) Calculated from measured data	volume/p]).
The power generation efficiency calculated	Net calorific value and
from monitored data of the amount of fuel	(NCV _{fuel} [GJ/mass or volume])
input for power generation $(FC_{PJ,p})$ and the	CO ₂ emission factor of the fuel
amount of electricity generated $(EG_{PJ,p})$	$(EF_{fuel} [tCO_2/GJ])$ in order of
during the monitoring period p is applied.	preference:
The measurement is conducted with the	1) values provided by the fuel
monitoring equipment to which calibration	supplier;
certificate is issued by an entity accredited	2) measurement by the project

	under national/	international	standards;	participants;
	$EF_{elec} = FC_{PJ,j}$	$_{p} \times \text{NCV}_{\text{fuel}} >$	$\langle \mathrm{EF}_{\mathrm{fuel}} \times \frac{1}{\mathrm{EG}_{\mathrm{PJ},\mathrm{p}}}$	3) regional or national default values;
	Where:			4) IPCC default values
	NCV _{fuel} : Net	calorific val	ue of consumed	provided in table 1.2 and table
	fuel [GJ/mass of	or volume]		1.4 of Ch.1 Vol.2 of 2006
				IPCC Guidelines on National
	Note:			GHG Inventories. Lower value
	In case the cap	tive electricity	y generation	is applied.
	system meets a	ll of the follo	wing conditions,	
	the value in the	following ta	ble may be	[Captive electricity with diesel
	applied to EFe	lec dependin	g on the	fuel]
	consumed fuel	type.		CDM approved small scale
				methodology: AMS-I.A.
	• The syster	n is non-rene	wable generation	
	system			[Captive electricity with
	• Electricity	generation c	apacity of the	natural gas]
	system is l	less than or ea	qual to 15 MW	2006 IPCC Guidelines on
				National GHG Inventories for
	fuel type	Diesel	Natural gas	the source of EF of natural
		Tuel	0.45	gas.
	EF _{elec}	0.8 *1	0.46 *2	CDM Methodological tool
				"Determining the baseline
	*1 The most re	cent value at	the time of	efficiency of thermal or
	validation is ap	plied.		electric energy generation
	*0 T11 '	1 1 1	ith the second is a	systems version 02.0" for the
	*2 The value is	calculated w		default efficiency for off-grid
	in the option a)	above. The I		power plants.
	default effectiv	$e CO_2 \text{ emission}$	on factor for	
	natural gas (0.0543tCO ₂ /GJ), and the most			
	efficient value of default efficiency for			
	off-grid gas turbine systems (42%) are			
COP	applied.	a rafaranca al	villar i is salacted	The default COP value is
COI RE,i	from the defau	lt COP value	in the following	derived from the result of
	table in line	with cooling	capacity of the	survey on COP of chillers
	nroject chillor		capacity of the	from manufacturary that has
	project chiner i	•		from manufacturers that has

				high market share. The survey
	COP _{RE,i}			should prove the use of clear
	Cooling	x<300 300	700	methodology. The $COP_{RE,i}$
	/unit (USRt)	x<700	x<1,150	should be revised if necessary
	COP _{RE,i}	5.13 5.50	5.66	from survey result which is
				conducted by JC or project
				participants.
COP _{PJ,i}	The COP of pro	oject chiller	<i>i</i> under	the Specifications of project
	project specific co	ndition.		chiller <i>i</i> prepared for the
				quotation or factory
				acceptance test data by
				manufacturer
$T_{\text{cooling-out,}}$	Output cooling wa	ater temperat	ure of pro	oject Specifications of project
	chiller <i>i</i> set un	der the pro	ject spec	cific chiller <i>i</i> prepared for the
	condition.			quotation or factory
				acceptance test data by
				manufacturer
$T_{chilled-out,i}$	Output chilled wa	ater temperatu	are of pro	oject Specifications of project
	chiller <i>i</i> set un	der the pro	ject spec	cific chiller <i>i</i> prepared for the
	condition.			quotation or factory
				acceptance test data by
				manufacturer

History of the document

Version	Date	Contents revised
02.0	15 March 2018	Electronic decision by the Joint Committee
		Revision to:
		• Change the description of "CO ₂ emission factor for consumed electricity (for captive electricity)" and "Measurement methods and procedures".
01.0	9 March 2016	JC3, Annex 10
		Initial approval.