Joint Crediting Mechanism Approved Methodology BD_AM003 "Energy efficiency improvement through the introduction of energy efficient air jet looms in textile industry"

A. Title of the methodology

Energy efficiency improvement through the introduction of energy efficient air jet looms in textile industry, Version 01.0

B. Terms and definitions

Terms	Definitions	
Air Jet Loom	A loom that uses a jet of air to propel the weft yarn through	
	the shed.	
Energy Saving Coefficient	The energy efficiency improvement achieved by the air jet	
(ESC)	looms introduced by the project. This parameter is	
	pre-determined based on the weaving speed and the power	
	consumption by the loom motor of the project air jet loom	
	and the reference rapier loom.	
Shedding	The process forming "the shed" by dividing the warp ends	
	into two sheets, providing a path for the weft. The shed is	
	formed raising and/or lowering frames. Among the three	
	main types of shedding mechanisms, Cam, Dobby, and	
	Jacquard, the methodology is applicable when Cam and/or	
	Dobby shedding is applied.	

C. Summary of the methodology

Items			Summary	
GHG	emission	reduction	The methodology is applicable to the project which newly	
measur	es		installs energy efficient air jet loom(s) or replaces existing	
			loom(s) by energy efficient air jet loom(s) at a textile factory.	
			GHG emission reductions will be achieved through electricity	
			savings per unit of final product.	

Calculation of reference	Reference emissions are calculated by multiplying the project	
emissions	electricity consumption by the loom motor(s) of the project air	
	loom(s), the default energy saving coefficient (ESC) provided	
	by the methodology, and the CO_2 emission factor for electricity	
	consumed.	
Calculation of project	Project emissions are calculated by multiplying the sum of the	
emissions	electricity consumption by the loom motor(s) of the project air	
	jet loom(s) and air compressor(s), and CO ₂ emission factor for	
	electricity consumption.	
Monitoring parameters	• Total amount of electricity consumed by the loom motor(s)	
	of the project air jet loom(s).	
	• Total amount of electricity consumed by the air	
	compressor(s) of the project air jet loom(s).	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The air jet loom(s) are introduced at a textile factory. The air jet looms		
	introduced as part of the project are equipped with energy saving technologies		
	such as an optimized shape reed's tunnel of nozzles and a pressure sensor to		
	measure air pressure of nozzles for optimization of compressed air		
	consumption of weft insertion.		
Criterion 2	Periodical checks of the project air jet loom(s) are conducted at least once		
	every calendar year.		
Criterion 3	Shedding mechanism of the project air jet loom(s) is either Cam or Dobby		
	shedding.		
Criterion 4	The effective reed width of the project air jet loom(s) is less than or equal to		
	190 cm.		

E. Emission Sources and GHG types

Reference emissions	
Emission sources GHG types	
Electricity consumption by the reference rapier loom(s) CO ₂	
Project emissions	

Emission sources	GHG types
Electricity consumption by the loom motor(s) of the project air jet	CO ₂
loom(s)	
Electricity consumption by the air compressor(s) of the project air jet	CO ₂
loom(s)	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with the following parameters:

- Total amount of electricity consumed by the loom motor(s) of the project air jet loom(s) [MWh/p];
- Default energy saving coefficient (ESC) provided by the methodology, that is determined based on the energy savings of the project air jet loom(s) compared to the reference rapier loom(s) [fraction]; and
- CO₂ emission factor for electricity consumed [tCO₂/MWh].

Net emission reductions are achieved by adopting a conservative energy saving coefficient (ESC) as the methodology default value. ESC is determined as function of the loom motor's power consumption and the weaving speed. Among various combinations of the weaving speed and the loom motor power available for the type of fabric woven in the country, a set of the weaving speed and the loom motor power, which lead to the most conservative ESC, are selected and used to determine the default ESC in the methodology for the project in Bangladesh.

F.2. Calculation of reference emissions

		$RE_{p} = \sum EC_{PJLM,p} \times ESC \times EF_{elec}$
Where:		
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
$\Sigma E C_{PJLM,p}$:	Total electricity consumption by the motor(s) of the project air jet loom(s)
		during the period <i>p</i> [MWh/p]
ESC	:	Energy saving coefficient [fraction]
EF_{elec}	:	CO ₂ emission factor for electricity consumed by the project [tCO ₂ /MWh]

G. Calculation of project emissions

		$PE_{p} = \left(\sum EC_{PJLM,p} + \sum EC_{PJAC,p}\right) \times EF_{elec}$
Where:		
PE_p	:	Project emissions during the period p [tCO ₂ /p]
$\Sigma E C_{PJLM,p}$:	Total electricity consumption by the motor(s) of the project air jet loom(s)
		during the period <i>p</i> [MWh/p]
$\Sigma E C_{PJAC,p}$:	Total electricity consumption by the air compressor(s) of the project air jet
		loom(s) during the period p [MWh/p]
EF_{elec}	:	CO ₂ emission factor for electricity consumed by the project [tCO ₂ /MWh]

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where:

ER_p :Emission reductions d	during the period p [tCO ₂ /p]
-------------------------------	---

 RE_p :Reference emissions during the period p [tCO₂/p]

 PE_p :Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
ESC	Energy saving coefficient (dimensionless)	Methodology default
	Default value: 2.93	
EF_{elec}	CO ₂ emission factor for electricity consumed	[Grid electricity]
	by the project	The most recent published
		value by National CDM
	When the project consumes only grid	Committee or any other
	electricity or captive electricity, the project	relevant authority such as

	nonticipant applies either the suid emission	ICM accordaniat at the time
		JCM secretariat at the time
	factor $[EF_{elec,grid}]$ or the captive emission	of validation
	factor $[EF_{elec,cap}]$ respectively.	
	When the project consumes both grid and	[Captive electricity with
	captive electricity, the project participant	diesel fuel]
	applies the lower value of the grid or the	CDM approved small scale
	captive emission factors.	methodology: AMS-I.A.
	[<i>EF</i> _{elec,grid}]: For grid electricity, the most recent	[Captive electricity with
	emission factor of Bangladesh grid	natural gas]
	[tCO ₂ /MWh] available at the time of	2006 IPCC Guidelines on
	validation.	National GHG Inventories
		for the source of EF of
	$[EF_{elec,cap}]$: For captive electricity, 0.8	natural gas.
	[tCO ₂ /MWh] [*] may be applied when the	CDM Methodological tool
	captive generator consumes diesel fuel. In	"Determining the baseline
	case of captive electricity with natural gas as	efficiency of thermal or
	fuel, the emission factor of 0.46	electric energy generation
	[tCO ₂ /MWh] ^{**} is applied.	systems version02.0" for the
		default efficiency for
	*The most recent value available from CDM	off-grid power plants.
	approved small scale methodology AMS-I.A	
	at the time of validation is applied.	
	**Calculated as follows:	
	$EF_{elec,cap} = \frac{EF_{NG}}{\eta_{cap}} \times 3.6 (GJ / MWh)$	
	Where:	
	EF_{NG} : 0.0543tCO ₂ /GJ, lower value of effective	
	CO ₂ emission factor for natural gas.	
	η_{cap} : 42%, default efficiency for off-grid gas	
	turbine system.	
·		

History of the document

Version	Date	Contents revised
01.0	16 October 2017	Electronic decision by the Joint Committee
		Initial approval.

JCM_BD_AM003_ver01.0 Sectoral scope: 03