Joint Crediting Mechanism Approved Methodology BD_AM001 "Energy Saving by Introduction of High Efficiency Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller, Version 1.0

B. Terms and definitions

Terms	Definitions	
Centrifugal chiller	A centrifugal chiller is a chiller applying a centrifugal	
	compressor. It is commonly used for air-conditioning with	
	huge cooling load, e.g., buildings, shopping malls or factories	
	etc.	
Cooling capacity	Cooling capacity is the ability of individual chiller to remove	
	heat. In this methodology, "cooling capacity" is used to	
	represent a cooling capacity per one chiller unit and not for a	
	system with multiple chiller units.	
Periodical check	Periodical check is a periodical investigation of chiller done	
	by manufacturer or agent who is authorized by the	
	manufacturer, in order to maintain chiller performance.	

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology applies to the project that aims for saving
measures	energy by introducing high efficiency centrifugal chiller for the
	target factory, commerce facilities etc. in Bangladesh.
Calculation of reference	Reference emissions are GHG emissions from using reference
emissions	chiller, calculated with power consumption of project chiller,
	ratio of COPs (Coefficient Of Performance) of reference/project
	chillers and CO ₂ emission factor for electricity consumed.
Calculation of project	Project emissions are GHG emissions from using project chiller,
emissions	calculated with power consumption of project chiller and CO ₂

	emission factor for electricity consumed.	
Monitoring parameter	Power consumption of project chiller	
	Amount of fuel consumed and amount of electricity	
	generated by captive power, where applicable.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project chiller is a centrifugal chiller with a capacity of less than 1,150 USRt.		
	* 1 USRt = 3.52 kW		
Criterion 2	COP for project chiller i calculated under the standardizing temperature		
011 .0 11011 2	conditions* ($COP_{PJ,tc,i}$) is more than 6.0.		
	COP _{PJ,tc,i} is a recalculation of COP of project chiller i (COP _{PJ,i}) adjusting		
	temperature conditions from the project specific condition to the standardizing		
	conditions. COP _{PJ,i} is derived in specifications prepared for the quotation or		
	factory acceptance test data at the time of shipment by manufacturer.		
	[equation to calculate COP _{PJ,tc,i}]		
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{cooling})$		
	$\div (37 - 7 + TD_{chilled} + TD_{cooling})]$		
	$COP_{PJ,tc,i}$: COP of project chiller i calculated under the standardizing		
	temperature conditions* [-]		
	$COP_{PJ,i}$: COP of project chiller i under the project specific		
	conditions [-]		
	$T_{\text{cooling-out,i}}$: Output cooling water temperature of project chiller i set		
	under the project specific condition [degree Celsius]		
	$T_{\text{chilled-out,i}}$: Output chilled water temperature of project chiller i set		
	under the project specific condition [degree Celsius]		
	TD _{cooling} : Temperature difference between condensing temperature		
	of refrigerant and output cooling water temperature		
	1.5 degree Celsius set as a default value [degree Celsius]		
	TD _{chilled} : Temperature difference between evaporating temperature		
	of refrigerant and output chilled water temperature,		
	1.5 degree Celsius set as a default value [degree Celsius]		
	*The standardizing temperature conditions to calculate COP _{PJ,tc,i}		
	Chilled water: output 7 degree Celsius		

	input 12 degree Celsius Cooling water: output 37 degree Celsius input 32 degree Celsius	
Criterion 3	Periodical check is conducted at least twice a year.	
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is	
Criterion 5	A plan for not releasing refrigerant used for project chiller is prepared. In the case of replacing the existing chiller with the project chiller, a plan is prepared in which refrigerant used in the existing chiller is not released to the air e.g. re-use of the refrigerant. Execution of the prevention plan is checked at the time of verification, in order to confirm that refrigerant used for the existing one replaced by the project is not released to the air.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference chiller	CO_2	
Project emissions		
Emission sources	GHG types	
Power consumption by project chiller	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The COP value tends to increase as the cooling capacity becomes larger.
- 2. The reference COP, which has a certain cooling capacity, is set at a maximum value in corresponding cooling capacity range.
- 3. The maximum values of COP in each cooling capacity ranges are defined as $COP_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \bigl\{ EC_{PJ,i,p} \times \bigl(COP_{PJ,tc,i} \div COP_{RE,i}\bigr) \times EF_{elec} \bigr\}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $COP_{PJ,tc,i}$: COP of project chiller i calculated under the standardizing temperature conditions

[-]

COP_{RE.i.}: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{Pl,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
	CO ₂ emission factor for consumed electricity	[Grid electricity]
EF_{elec}	[tCO ₂ /MWh].	The most recent value
		available at the time of
	When project chiller consumes only grid	validation is applied and fixed

electricity or captive electricity, the project participant applies the CO₂ emission factor respectively.

When project chiller may consume both grid electricity and captive electricity, the project participant applies the CO₂ emission factor with lower value.

[CO₂ emission factor]

For grid electricity: The most recent value available from the source stated in this table at the time of validation

For captive electricity, it is determined based on the following options:

a) 0.8*

*The most recent value available from CDM approved small scale methodology AMS-I.A at the time of validation is applied.

b) Calculated from its power generation efficiency (η_{elec} [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

c) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Bangladesh", endorsed by National CDM Committee unless otherwise instructed by the Joint Committee.

[Captive electricity]
For the option a)
CDM approved small scale
methodology: AMS-I.A

For the option b) Specification of the captive power generation system provided by the manufacturer $(\eta_{elec} \, [\%])$. CO_2 emission factor of the

fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

For the option c)
Generated and supplied
electricity by the captive
power generation system
(EG_{PJ,p} [MWh/p]).
Fuel amount consumed by the
captive power generation
system (FC_{PJ,p} [mass or
weight/p]).
Net calorific value and
(NCV_{fuel} [GJ/mass or weight])
CO₂ emission factor of the fuel
(EF_{fuel} [tCO2/GJ]) in order of

	The measurement is conducted with the	preference:
	monitoring equipment to which calibration	1) values provided by the fuel
	certificate is issued by an entity accredited	supplier;
	under national/international standards;	2) measurement by the project
	$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel}$	participants;
	1	3) regional or national default
	$\times \frac{1}{EG_{PJ,p}}$	values;
	Where:	4) IPCC default values
	NCV_{fuel} : Net calorific value of consumed	provided in table 1.4 of Ch.1
	fuel [GJ/mass or weight]	Vol.2 of 2006 IPCC Guidelines
		on National GHG Inventories.
		Lower value is applied.
$COP_{RE,i}$	The COP of the reference chiller i is selected	The default COP value is
	from the default COP value in the following	derived from the result of
	table in line with cooling capacity of the	survey on COP of chillers from
	project chiller i.	manufacturers that has high
		market share. The survey
	$\mathrm{COP}_{\mathrm{RE,i}}$	should prove the use of clear
	Cooling capacity x<300 300 700	methodology. The COP _{RE,i}
	/unit (USRt) x<700 x<1,150	should be revised if necessary
	COP _{RE,i} 5.13 5.50 5.66	from survey result which is
		conducted by JC or project
		participants.
$COP_{PJ,i}$	The COP of project chiller i under the	Specifications of project
	project specific condition.	chiller i prepared for the
		quotation or factory
		acceptance test data by
		manufacturer
T _{cooling-out} ,	Output cooling water temperature of project	Specifications of project
	chiller i set under the project specific	chiller i prepared for the
	condition.	quotation or factory
		acceptance test data by
		manufacturer
T _{chilled-out,i}	Output chilled water temperature of project	Specifications of project
	chiller i set under the project specific	chiller i prepared for the
	condition.	quotation or factory
		acceptance test data by

	manufacturer
--	--------------

History of the document

Version	Date	Contents revised
01.0	9 March 2016	JC3, Annex 10
		Initial approval.