JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The People's Republic of Bangladesh
Name of the methodology proponents	Nippon Koei Co., Ltd.
submitting this form	
Sectoral scope(s) to which the Proposed	2. Energy distribution
Methodology applies	
Title of the proposed methodology, and	Installation of energy-saving conductors for
version number	transmission lines in the Bangladesh grid
	(Ver.1.0)
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	⊠Additional information
Date of completion	23/03/2022

History of the proposed methodology

Version	Date	Contents revised	
Ver.1.0	23/03/2022	First version	

A. Title of the methodology

Installation of energy-saving conductors for transmission lines in the Bangladesh grid (Ver.1.0)

B. Terms and definitions

Terms	Definitions	
ACSR (Aluminum Conductor	ACSR is a conductor whose structure consists of the steel	
Steel Reinforced), (reference	center strand(s), covered by outer strands of aluminum.	
conductors)		
HTLS (High-Temperature Low-	HTLS are conductors which have less sag at high	
Sag conductors), (project temperatures, higher capacity and less energy loss		
conductors)	cores made of steel alloys, composite-reinforced metal, or	
	carbon fiber composite material compared to conventional	
	ACSR.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Reduction of transmission loss by introduction of HTLS.	
measures		
Calculation of reference	Calculation of GHG emissions due to transmission loss in	
emissions	ACSR, based on the parameters derived from ASTM	
	International Standard B232 (Standard Specification for	
	ACSR).	
Calculation of project	GHG emissions due to transmission loss in HTLS, based on	
emissions	monitored transmission loss.	
Monitoring parameters	Power sent from the point of origin/supply to the transmission	
	line, power received at the point of end/receipt of the	
	transmission line.	

D. Eligibility criteria				
This methodol	logy is applicable to projects that satisfy all of the following criteria.			
	The transmission line constitutes of a single or double circuit(s) directly			
Criterion 1	connecting a substation and another substation within the country with no			

branching in between, and does not constitute a part of a loop.

Criterion 2	The type of conductor used by the project is a family of HTLS. Definition and
	types of HTLS are explained in additional information.

E. Emission Sources and GHG types

Reference emissions				
Emission sources	GHG types			
Transmission loss in reference conductors	CO ₂			
Project emissions				
Emission sources	GHG types			
Transmission loss in project conductors	CO ₂			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions (RE_p) are calculated by multiplying transmission loss in ACSR (LOSS_{RF,L,p}) by the emission factor of the grid (EF_{Grid}). The LOSS_{RF,L,p} is derived by multiplying the project transmission loss in HTLS (LOSS_{PJ,L,p}) by the ratio of direct current (DC) resistance between ACSR and HTLS.

To ensure conservativeness in establishing the reference emissions to achieve net emission reductions, the following assumptions are applied:

- The ratio of DC resistance between ACSR and HTLS, instead of the ratio of alternative current (AC) resistance, is used because the ratio of DC resistance is smaller than that of AC resistance under the standard condition.
- The same temperature at 20 deg. C. is assumed for the ACSR and HTLS to calculate the ratio of DC resistance between ACSR and HTLS. This ratio of direct current resistance derived at 20 deg. C. is smaller than the ratio at the actual temperature (the actual temperature of ACSR conductors would be higher than that of HTLS at the same ambient temperature due to higher resistance of ACSR).
- The default value of DC resistance of ACSR (reference transmission line, Rdc_{RF,L}) is set by discounting by 2% the direct current resistance of ACSR code in ASTM International Standard B232 for the same overall diameter used in Bangladesh. The diameter of each strand of the reference conductor is assumed 1% larger than its

specification, which is the maximum allowable tolerance of major international standard such as the International Electrotechnical Commission (IEC), resulting in 2% increase in cross-sectional area and thus 2% reduction in resistance (the value of resistance is inversely proportional to that of the cross-sectional area).

F.2. Calculation of reference emissions

Reference emissions are calculated by the following equation.				
$RE_p = \sum_{L} (LOSS_{RF,L,p} \times EF_{Grid}) $ (1)				
LOSS _{RE,L,}	_p =	$\text{LOSS}_{\text{PJ,L,p}} \times \frac{R_{\text{DC,_RE,L}}}{R_{\text{DC,_PI,L}}}$	(2)	
Where				
RE _p	= Reference emissions during the period p [tCO ₂ /p]			
LOSS	_	Reference transmission loss at transmission line L during the period p		
LOSSRF,L,p	_	[MWh/p]		
$\mathrm{EF}_{\mathrm{Grid}}$	=	CO ₂ emission factor of the grid [tCO ₂ /MWh]		
LOSS	_	Project transmission loss at transmission line L during the period	od p	
LOSSPJ,L,p	_	[MWh/p]		
Preserv	_	Direct current resistance of transmission line L using reference A	CSR	
ICDC_RF,L		(@20 deg. C) [Ω/km]		
Press	_	Direct current resistance of transmission line L using HTLS (@20 de	eg. C)	
IN DC_PJ,L	_	[Ω/km]		

G. Calculation of project emissions

Project emissions are calculated by multiplying transmission loss in the project (LOSS_{PJ,L,p}) by the CO₂ emission factor of the grid (EF_{Grid}).

$$PE_p = \sum_{L} (LOSS_{PJ,L,p} \times EF_{Grid})$$
(3)

 $LOSS_{PJ,L,p} = E_{L,send,p} - E_{L,receive,p}$ (4)

Where

$$PE_p$$
 = Project emissions during the period p [tCO₂/p]

$$\text{LOSS}_{PJ,L,p} = \frac{\text{Project transmission loss at transmission line L during the period } p}{[MWh/p]}$$

Б	=	Power sent from the point of origin/supply to the transmission line L
EL,send,p		during the period <i>p</i> [MWh/p]
E _{L,receive,p}	_	Power received at the point of receipt of the transmission line L during
	=	the period p [MWh/p]
$\mathrm{EF}_{\mathrm{Grid}}$	=	CO ₂ emission factor of the grid [tCO ₂ /MWh]

H. Calculation of emissions reductions

Emission reductions are calculated by the following equation. $ER_p = RE_p - PE_p$ (5)Where $ER_p = Emission reduction during the period <math>p$ [tCO₂/p] $RE_p = Reference emission during the period <math>p$ [tCO₂/p] $PE_p = Project$ emission during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter		Description	Source	
R dc_pj,l	Direct curre	ent resistance	Measured according to IEC	
	using HTLS	5 (@20 deg. 0	C) [Ω/km]	60468 (Method of
				measurement of resistivity of
				metallic materials).
R dc_rf,,L	Direct current resistance of transmission Line L			Based on ASTM
	using refere	nce ACSR ((@20 deg. C) [Ω/km]	International Standard B232
	Reference v	alue is calcu		
	of the direct current resistance of a type of			
	ACSR of which specified in ASTM International			
	Standard B232 which has same overall diameter			
	as one of project HTLS.			
	Example of default R _{DC_RE,L} Value:			
	ASCR Code	Overall diameter (mm)	$\begin{array}{c} R_{DC_RF,L} \text{ (Direct} \\ \text{current resistance} \\ \hline @20 \text{ deg. C)} (\Omega/\text{km}) \end{array}$	
	Flamingo	25.34	0.0838	
	Mallard Cardinal	28.96 30.42	0.0702	
EF _{Grid}	For transmission loss in both reference and			The most recent value

project scenario, the most recent emission factor	available at the time of
of Bangladesh grid [tCO2/MWh] available at the	validation is applied and
time of validation.	fixed for the monitoring
	period thereafter.
	The data is sourced from
	"Grid Emission Factor (GEF)
	of Bangladesh", endorsed by
	National CDM Committee
	unless otherwise instructed
	by the Joint Committee.